Gütekriterien einer Schätzfunktion
Aus MM*Stat
Grundbegriffe
Gütekriterien einer Schätzfunktion
Oft gibt es mehrere mögliche Schätzfunktionen , um einen bestimmten Parameter der Grundgesamtheit zu schätzen.
Um eine objektive Auswahl aus konkurrierenden Schätzfunktionen treffen zu können, werden die Eigenschaften der Schätzfunktionen herangezogen und als Kriterien der Güte verwendet.
Zu diesen Eigenschaften gehören unter Anderem:
Beispiele
Beispiel 1
Die Verteilung der Grundgesamtheit sei symmetrisch. In diesem Fall ist der Erwartungswert der Grundgesamtheit gleich dem Median.
Somit könnte der unbekannte Erwartungswert mittels der Schätzfunktion des Stichprobenmittelwertes oder des Stichprobenmedians geschätzt werden.
Für konkrete Stichproben werden die beiden Schätzfunktionen im Allgemeinen unterschiedliche Schätzwerte annehmen. Welche Schätzfunktion soll gewählt werden?
Beispiel 2
Für die Schätzung der unbekannten Varianz der Grundgesamtheit können bei unbekanntem Mittelwert die beiden Stichprobenfunktionen
als Schätzfunktionen verwendet werden. Welche Schätzfunktion soll im konkreten Fall gewählt werden?
Beispiel 3
Die Zufallsvariable in der Grundgesamtheit sei Poisson-verteilt. Für die Poisson-Verteilung ist bekannt, dass ist.
Den unbekannten Parameter könnte man daher mittels des Stichprobenmittelwertes oder über die Stichprobenvarianz schätzen.
Auch hierfür gilt, dass für konkrete Stichproben die beiden Schätzfunktionen unterschiedliche Schätzwerte liefern werden.