Grafische Darstellung stetiger Merkmale: Unterschied zwischen den Versionen
Aus MM*Stat
Keine Bearbeitungszusammenfassung |
Keine Bearbeitungszusammenfassung |
||
Zeile 1: | Zeile 1: | ||
{{Univariate Statistik}} | {{Univariate Statistik}} | ||
{{SubpageToc|Beispiel: Nettoeinkommen (Histogramm und Stengel-Blatt-Diagramm)|Beispiel: Benzinverbrauch (Histogramm)|Beispiel: Kriminalitätsraten (Interaktives Histogramm)|Beispiel: Parallele Visualierungen einer Häufigkeitsverteilung (interaktiv)}} | {{SubpageToc|Beispiel: Nettoeinkommen (Histogramm und Stengel-Blatt-Diagramm)|Beispiel: Benzinverbrauch (Histogramm)|Beispiel: Kriminalitätsraten (Interaktives Histogramm)|Beisepiel: Dotplot mit Autodaten (interaktiv)|Beispiel: Parallele Visualierungen einer Häufigkeitsverteilung (interaktiv)}} | ||
=={{PAGENAME}}== | =={{PAGENAME}}== |
Version vom 3. Juli 2020, 08:37 Uhr
Grafische Darstellung stetiger Merkmale
Histogramm
Die grafische Darstellung der Häufigkeiten eines stetigen klassierten Merkmals durch rechteckige Flächen wird als Histogramm bezeichnet. Es eignet sich auch zur Darstellung der Häufigkeiten diskreter Merkmale mit sehr vielen Merkmalsausprägungen, da solche Merkmale vielfach klassiert und als (quasi-)stetige Merkmale behandelt werden.
Die Klassengrenzen werden auf der Abszissenachse abgetragen. Über den Klassen werden Rechtecke in Höhe der Häufigkeitsdichten oder eingezeichnet.
Die Klassenhäufigkeit wird durch die Fläche des Rechtecks über der jeweiligen Klasse repräsentiert (flächenproportionale Darstellung). Die Verwendung der Häufigkeitsdichten ist unbedingt erforderlich, wenn ungleiche Klassenbreiten vorliegen.
Wird jedoch für alle Klassen eine gleiche Klassenbreite gewählt, kann auch eine höhenproportionale Darstellung verwendet werden, indem auf der Ordinatenachse die absoluten bzw. relativen Häufigkeiten abgetragen und die Rechtecke über den Klassen in Höhe der entsprechenden Häufigkeiten eingezeichnet werden.
Beispiel eines Histogramms für 2000 Beobachtungen des monatlichen persönlichen Nettoeinkommens (in Euro, Daten aus ALLBUS 2010):
Stengel-Blatt-Diagramm
Ein Stengel-Blatt-Diagramm (engl. stem-and-leaf-diagram) ist eine halbgrafische Darstellung der Werte einer Beobachtungsreihe eines metrisch skalierten Merkmals. Wie der Name vermuten lässt, besteht das Stengel-Blatt-Diagramm aus einem "Stamm" (stem) und "Blättern" (leaf).
Abhängig von der Anzahl der Beobachtungswerte gibt es zwei Grundvarianten des Stengel-Blatt-Diagramms.
Die erste Variante soll hier an einem kleinen Beispiel veranschaulicht werden. Die zweite Variante wird im Beispiel Netteinkommen weiter unten gezeigt.
Beobachtungsreihe: 32,32,35,36,40,44,47,48,53,57,57,100,105
Frequency Stem & Leaf 2,00 3 . 22 2,00 3 . 56 2,00 4 . 04 2,00 4 . 78 1,00 5 . 3 2,00 5 . 77 2,00 Extremes (>=100) Stem width: 10,00 Each leaf: 1 case(s)
Unterhalb des Diagramms wird die Stamm-Einheit (stem width) angegeben. Das obige Diagramm hat z.B. eine "stem width" von 10, was bedeutet, dass der Stamm die Zehner-Ziffern enthält und die Blätter die Einer-Ziffern.
Der Stamm ist in diesem Beispiel auf zwei Zeilen aufgeteilt. Die erste Zeile, gekennzeichnet durch einen Stern (*), nimmt die Blätter von 0 bis 4, die zweite Zeile, gekennzeichnet durch einen Punkt (.), die Blätter von 5 bis 9 auf.
So hat beispielsweise der Beobachtungswert 47 den Stamm 4 und das Blatt 7. Jedes Blatt steht für einen Beobachtungswert ("Each leaf: 1 case"). Der Beobachtungswert 32 (Stamm 3, Blatt 2) kommt zweimal vor.
Weiterhin existieren zwei extrem große Beobachtungswerte (100 und 105), die als solche ausgewiesen sind.
Dotplot
Ein Dotplot ist eine zweidimensionale Darstellung eindimensionaler Daten, wobei auf der Abszissenachse der Bereich der beobachteten Merkmalswerte abgetragen wird.
Die einzelnen Beobachtungen werden über dieser Achse als Punkte (oder anderes Symbol) eingezeichnet.
Beispiel für 150 US-Stundenlöhne, wobei in dem oberen Teil der Grafik ein Dotplot für alle 150 Beobachtungen zusammen und im unteren Teil ein Dotplot mit der farbigen Trennung nach Männern und Frauen abgebildet ist.