Einstichproben-t-Test/Beispiel: Autoreifen
Aus MM*Stat
Beispiele
Autoreifen
Mit diesem Beispiel wird demonstriert, wie die verfügbaren Informationen über die Grundgesamtheit die Wahl der Teststatistik, der Entscheidungsbereiche und möglicherweise, je nach konkretem Stichprobenergebnis, die Entscheidungssituationen beeinflussen.
Ein Unternehmen stellt Autoreifen her. Zur Erhöhung der Lebensdauer eines bestimmten Typs von Autoreifen wurden Materialänderungen vorgenommen.
Die Konkurrenz behauptet nun, dass durch die Materialänderung keine Erhöhung gegenüber der ursprünglichen mittleren Lebensdauer dieses Reifentyps von 38000 km erreicht wurde.
Die Zufallsvariable in der Grundgesamtheit ist die Lebensdauer des betrachteten Reifentyps mit dem hypothetischen Wert über den Erwartungswert .
Der Unternehmer behauptet, dass die mittlere Lebensdauer nach der Materialänderung größer ist: .
Diese Behauptung will er statistisch untermauern, wobei er das Risiko einer Fehlentscheidung möglichst klein halten will, um der Konkurrenz keine weiteren Argumente zu liefern.
Da nur Abweichungen von nach einer Seite von Bedeutung sind, wird ein einseitiger Test durchgeführt.
Die Behauptung des Unternehmers wird als Alternativhypothese formuliert, womit ein rechtsseitiger Test resultiert:
Über eine Fehlerbetrachtung ist zu prüfen, ob bei dieser Hypothesenformulierung die Intention des Unternehmers eingehalten wird. Der bei der Ablehnung der mögliche Fehler 1. Art hat folgenden Inhalt:
Die "Lebensdauer hat sich durch die Materialänderung erhöht" | In Wirklichkeit hat sich die Lebensdauer nicht erhöht.
Wird im Ergebnis des Tests die Nullhypothese nicht abgelehnt, ist der Inhalt des dann möglichen Fehlers 2. Art:
"Die Lebensdauer hat sich nicht erhöht" | In Wirklichkeit hat sich die Lebensdauer durch die Materialänderung erhöht.
Der Fehler 1. Art ist für den Unternehmer der schwerwiegendere Fehler, denn die dauerhafte Verwendung des veränderten Reifens würde bald zeigen, dass die Lebensdauer durch die Materialänderung tatsächlich nicht größer wurde, was dem Ansehen des Reifenherstellers bei seinen Kunden erheblichen Schaden zufügen würde.
Die Wahrscheinlichkeit eines Fehlers 1. Art ist das Signifikanzniveau , mit dessen Vorgabe das Risiko eines derartigen Fehlers gering gehalten werden kann.
Damit wird die Zielstellung des Unternehmers bei der Durchführung des Tests eingehalten.
Die Wahrscheinlichkeit eines Fehlers 2. Art ist unbekannt, da der wahre Erwartungswert unter der Alternativhypothese nicht bekannt ist.
Diese Wahrscheinlichkeit eines Fehlers 2. Art, d.h. das Risiko, die tatsächlich eingetretene Erhöhung der Lebensdauer nicht nachzuweisen, kann sehr groß sein.
Das muss der Unternehmer jedoch in Kauf nehmen, da er andere Prioritäten für die Überprüfung gesetzt hatte. In diesem Falle müsste er weitere technische Überprüfungen folgen lassen.
Einstichproben-t-Test
Bei gleichem Signifikanzniveau und Stichprobenumfang wird weiterhin von einer Normalverteilung der Lebensdauer nach der Materialänderung ausgegangen.
Die Standardabweichung kann sich aber verändert haben, so dass sie nunmehr unbekannt ist.
Als Teststatistik ist jetzt
zu verwenden, die bei Gültigkeit der Nullhypothese einer t-Verteilung mit Freiheitsgraden folgt.
Aus der Tabelle der Verteilungsfunktion der t-Verteilung findet man für und den kritischen Wert .
Damit ergeben sich die Entscheidungsbereiche des Tests zu
Neben dem Stichprobenmittelwert muss auch die Standardabweichung aus der Stichprobe geschätzt werden. Es habe sich ergeben: und .
Als Prüfwert erhält man:
Da in den Ablehnungsbereich der fällt, wird die Nullhypothese abgelehnt.
Auf einem Signifikanzniveau von und basierend auf einer einfachen Zufallsstichprobe vom Umfang konnte statistisch gezeigt werden, dass der wahre Erwartungswert der Lebensdauer des Reifentyps nach der Materialänderung größer als der hypothetische Wert ist.
Auch bei dieser Testentscheidung besteht natürlich die Möglichkeit, einen Fehler 1. Art zu begehen, falls in Wirklichkeit die Nullhypothese richtig ist.
Die Wahrscheinlichkeit wurde jedoch mit dem Signifikanzniveau klein gehalten.
Wenn in Wirklichkeit die Alternativhypothese richtig ist, wurde im Ergebnis des Tests eine richtige Entscheidung getroffen .
Die Wahrscheinlichkeit kann nur bestimmt werden, wenn ein konkreter Alternativwert angegeben werden kann und gleichzeitig unterstellt wird, dass die Punktschätzung die wahre Standardabweichung in der Grundgesamtheit ist.
Approximation durch Gauß-Test
Nunmehr wird auch die Annahme der Normalverteilung für die Lebensdauer fallengelassen, womit diese Variante die praktisch relevanteste ist.
Um einen Test auf durchführen zu können, muss der Stichprobenumfang gewählt werden, damit der Zentrale Grenzwertsatz zur Anwendung kommen kann.
Der Unternehmer entscheidet sich für .
Eine Lebensdauerprüfung der Reifen diesen Umfangs ist natürlich mit wesentlich höheren Kosten verbunden, die er jedoch als "Tribut" für die fehlenden Informationen über die Grundgesamtheit zahlen muss, wenn er den Test überhaupt durchführen will.
Als Signifikanzniveau wählt er .
Als Teststatistik ist
zu verwenden, die (wegen und der Wirksamkeit des Zentralen Grenzwertsatzes) unter approximativ -verteilt ist.
Für findet man den kritischen Wert .
Damit ergeben sich die approximativen Entscheidungsbereiche:
Neben dem Stichprobenmittelwert muss auch bei dieser Variante die Standardabweichung aus der Stichprobe geschätzt werden. Es habe sich ergeben: und .
Als Prüfwert erhält man:
Da in den Ablehnungsbereich der fällt, wird die Nullhypothese abgelehnt.
Auf einem Signifikanzniveau von und basierend auf einer einfachen Zufallsstichprobe vom Umfang konnte statistisch gezeigt werden, dass der wahre Erwartungswert der Lebensdauer des Reifentyps nach der Materialänderung größer als der hypothetische Wert ist.
Falls in Wirklichkeit die Nullhypothese richtig ist, begeht man mit ihrer Ablehnung einen Fehler 1. Art, dessen Wahrscheinlichkeit mit dem Signifikanzniveau klein gehalten wurde.
Wenn in Wirklichkeit die Alternativhypothese richtig ist, wurde im Ergebnis des Tests eine richtige Entscheidung getroffen .
Die Wahrscheinlichkeit kann nur bestimmt werden, wenn ein konkreter Alternativwert angegeben werden kann und gleichzeitig unterstellt wird, dass die Punktschätzung die wahre Standardabweichung in der Grundgesamtheit ist.