Grundbegriffe der Statistik/Video: Unterschied zwischen den Versionen

Aus MM*Stat

Wechseln zu: Navigation, Suche
(Berliner Bühnen)
 
Zeile 178: Zeile 178:
 
== Berliner Bühnen ==
 
== Berliner Bühnen ==
  
<iframe k="hubox" p="3f2c2ee1f0084e578236/files/?p=/Statistik%20Aufgaben/Grundbegriffe-Berliner%20Buehnen.mp4" w="100%"/>
+
<iframe k="hubox" p="d/3f2c2ee1f0084e578236/files/?p=/Statistik%20Aufgaben/Grundbegriffe-Berliner%20Buehnen.mp4" w="100%"/>
  
 
== Versicherungsunternehmen ==
 
== Versicherungsunternehmen ==

Aktuelle Version vom 15. Mai 2019, 10:34 Uhr

Grundbegriffe der Statistik

Statistik • Statistische Untersuchung • Träger der Statistik • Statistische Einheit • Grundgesamtheit • Merkmal • Skalierung • Klassierung • Statistische Reihen • Statistische Häufigkeiten • Multiple Choice • Aufgaben • Lösungen • Videos
Absolute Häufigkeit • Absolute Klassenhäufigkeit • Absolutskala • Ausprägung • Ausreißer • Beobachtung • Beobachtungswert • Bestandsmasse • Bewegungsmasse • Binäres Merkmal • Daten • Datensatz • Deskriptive Statistik • Dichotomes Merkmal • Diskretes Merkmal • Erhebungsmerkmal • Fortschreibung • Gruppe • Gruppierung • Häufbares Merkmal • Häufigkeitsdichte • Häufigkeitsverteilung • Identifikationskriterium • Identifikationsmerkmal • Intervallskala • Induktive Statistik • Kardinalskala • Klasse • Klassenbreite • Klassengrenze • Klassenhäufigkeit • Klassenmitte • Merkmalsausprägung • Merkmalsträger • Merkmalswert • Messniveau • Metrische Skala • Nominalskala • Nominalzahl • Ordinalskala • Parameter • Qualitatives Merkmal • Quantitatives Merkmal • Quasi-stetiges Merkmal • Rangzahl • Relative Häufigkeit • Relative Klassenhäufigkeit • Schlüsselzahl • Skala • Skalenniveau • Statistische Deskription • Statistische Inferenz • Statistische Masse • Stetiges Merkmal • Stichprobenerhebung • Teilerhebung • Totalerhebung • Umfang der Grundgesamtheit • Urliste • Variable • Verhältnisskala • Verteilung (empirisch) • Vollerhebung

Befragung von Studierenden Teil I

Für eine Untersuchung von Studierenden an einer deutschen Hochschule wurden im Juni 25 Studierende nach dem Studiengang, der Anzahl der Geschwister und nach dem Einkommen befragt. Das Ergebnis war:

Name Studiengang Zahl der Geschwister Einkommen
1 Martin A. VWL 0 924
2 Ute A. Sozialwiss. 1 789
3 Wilhelm A. BWL 0 1 365
4 Kurt B. BWL 1 683
5 Sylvia B. Polit.Wiss. 1 744
6 Elke D. Polit.Wiss. 2 640
7 Klaus D. Sozialwiss. 2 631
8 Theo E. VWL 1 814
9 Jean F. Polit.Wiss. 1 778
10 Elvira G. BWL 0 1 062
11 Karl H. BWL 0 1 230
12 Andreas K. VWL 1 700
13 Thomas K. BWL 0 850
14 Chris L. Sozialwiss. 3 641
15 Uwe L. Polit.Wiss. 2 640
16 Axel M. BWL 0 850
17 Maria M. BWL 1 683
18 Ruth M. Sozialwiss. 0 616
19 Bärbel N. BWL 1 683
20 Armin R. BWL 2 683
21 Christa R. VWL 1 660
22 Bernd S. BWL 1 1440
23 Claudia S. Sozialwiss. 3 794
24 Erich T. VWL 0 660
25 Claudia W. Polit.Wiss. 1 640
  • Was ist bei dieser Befragung die Grundgesamtheit, was sind die einzelnen statistischen Einheiten? Durch welche Identifikationskriterien ist die untersuchte Grundgesamtheit festgelegt?
  • Wie ist das Erhebungsmerkmal “Studiengang” skaliert? Ermitteln Sie aus der obigen Urliste die absolute und relative Häufigkeitsverteilung für dieses Merkmal. Stellen Sie die Häufigkeitsverteilung graphisch dar.
  • Wie ist das Erhebungsmerkmal “Anzahl der Geschwister” skaliert? Ermitteln Sie die absolute und relative Häufigkeitsverteilung für dieses Merkmal. Erstellen Sie die empirische Verteilungsfunktion. Stellen Sie die Häufigkeitsverteilung und die empirische Verteilungsfunktion graphisch dar.
  • Wie viele Studierende haben höchstens 2 Geschwister? Wie viel Prozent der Studierenden haben mindestens 2 Geschwister? Wie viel Prozent der Studierenden haben ein oder zwei Geschwister?
  • Wie ist das Erhebungsmerkmal “Einkommen” skaliert? Ermitteln Sie die absolute und relative Häufigkeitsverteilung für dieses Merkmal unter Verwendung folgender Einkommensklassen (von ... bis unter ...): 600–650, 650–700, 700–900, 900–1200, 1200–1450. Erstellen Sie die empirische Verteilungsfunktion. Stellen Sie die Häufigkeitsverteilung und die empirische Verteilungsfunktion graphisch dar.
  • Berechnen Sie ausgehend von der Einkommensverteilung unter e):
    • Welcher Anteil der Studierenden hat ein Einkommen von mindestens 750 und höchstens 1300 EUR?
    • Welcher Anteil der Studierenden hat ein Einkommen von mehr als 800 EUR?
    • Welches Einkommen hatten die 50% einkommensschwächsten Studierenden höchstens?
    • Welches Einkommen hatten die 20% einkommensstärksten Studierenden mindestens?

Berliner Bühnen

Versicherungsunternehmen

In einem Versicherungsunternehmen sollen die zur Verfügung stehenden Daten über die Kfz–Haftpflicht–Versicherung zusammengestellt werden. Gefragt ist u.a. nach Alter, Geschlecht, Beruf und Wohnort des Versicherten, Dauer des Versicherungsvertrages, Anzahl der bisher eingetretenen Schadensfälle und der Schadenshöhe insgesamt (in EUR).

  • a) Bestimmen Sie die statistischen Einheiten und die Grundgesamtheit.
  • b) Welche statistischen Merkmale sollen erhoben werden? Charakterisieren Sie diese Merkmale.
  • c) Geben Sie mögliche Ausprägungen dieser Merkmale an.

Zugfolge Teil I

An einer Schranke der Bahnstrecke von A nach B wurden am 20.1.2018 folgende Abstände der Zugfolge in Minuten gemessen:

59; 43; 36; 63; 23; 4; 29; 41; 43; 31; 29; 69; 57; 36; 112; 43; 14; 11; 18; 77; 81; 47; 12; 43; 44; 16; 80; 6; 52; 5; 5; 6; 21; 43; 44; 46; 51

  • Wie ist das Erhebungsmerkmal skaliert? Ist es häufbar, nicht häufbar, stetig, diskret?
  • Ermitteln Sie die absolute und relative Klassenhäufigkeiten unter Verwendung von Klassen der Breite 30 Minuten. Stellen Sie die Häufigkeitsverteilung graphisch dar.
  • Geben Sie die empirische Verteilungsfunktion an und stellen Sie diese graphisch dar.