Schätztheorie/Lösungen: Unterschied zwischen den Versionen

Aus MM*Stat

Wechseln zu: Navigation, Suche
 
(2 dazwischenliegende Versionen von einem anderen Benutzer werden nicht angezeigt)
Zeile 84: Zeile 84:


<math>
<math>
\begin{align}
\begin{align}
\left[ \overline{x} \text{ ± } t_{n-1; 1-\alpha/2} \cdot \frac{s}{\sqrt{n}} \right]  
\left[ \overline{x} \pm t_{n-1; 1-\alpha/2} \cdot \frac{s}{\sqrt{n}} \right]  
&= \left[ 1440 \text{ ± } t_{15; 1-\alpha/2} \cdot \frac{240}{\sqrt{16}} \right] \\
&= \left[ 1440 \pm t_{15; 1-\alpha/2} \cdot \frac{240}{\sqrt{16}} \right] \\
&= \left[ 1440 \text{ ± } t_{15; 1-\alpha/2} \cdot 60 \right] \\
&= \left[ 1440 \pm t_{15; 1-\alpha/2} \cdot 60 \right] \\
&= \left[ 1263.12; 1616.88 \right]
&= \left[ 1263.12; 1616.88 \right]
\end{align}
\end{align}
</math>
</math>


Zeile 322: Zeile 322:


<ul>
<ul>
<li><p>Likelihood-Funktion: <math>\begin{aligned}
<li><p>Likelihood-Funktion: <math>\begin{align}
L(\lambda;x_1,x_2,x_3,x_4)&=&f(x_1|\lambda)\cdot f(x_2|\lambda)\cdot f(x_3|\lambda)\cdot f(x_4|\lambda)\\
L(\lambda;x_1,x_2,x_3,x_4)&=&f(x_1|\lambda)\cdot f(x_2|\lambda)\cdot f(x_3|\lambda)\cdot f(x_4|\lambda)\\
&=&\frac{\lambda^2}{2!}e^{-\lambda}\cdot\frac{\lambda^4}{4!}e^{-\lambda}\cdot\frac{\lambda^6}{6!}e^{-\lambda}\cdot\frac{\lambda^3}{3!}e^{-\lambda}=\frac{\lambda^{15}}{2!4!6!3!}e^{-4\lambda}\end{aligned}</math></p></li>
&=&\frac{\lambda^2}{2!}e^{-\lambda}\cdot\frac{\lambda^4}{4!}e^{-\lambda}\cdot\frac{\lambda^6}{6!}e^{-\lambda}\cdot\frac{\lambda^3}{3!}e^{-\lambda}=\frac{\lambda^{15}}{2!4!6!3!}e^{-4\lambda}\end{align}</math></p></li>
<li><p>ML-Schätzwert für <math>\lambda</math>:<br />
<li><p>ML-Schätzwert für <math>\lambda</math>:<br />
<br />
<br />
Zeile 469: Zeile 469:


<ul>
<ul>
<li><p><math>\begin{aligned}
<li><p><math>\begin{align}
E(X_{i}) &=& 0 \cdot \pi_{0}+ 1 \cdot \pi_{1}  + 2 \cdot \pi_{2}=\pi_{1}  + 2 \cdot \pi_{2}\\
E(X_{i}) &=& 0 \cdot \pi_{0}+ 1 \cdot \pi_{1}  + 2 \cdot \pi_{2}=\pi_{1}  + 2 \cdot \pi_{2}\\
E(\widehat{\pi}_{1})&=&E \left(\frac1{10} \sum_{i=1}^{10} (2X_i - X_i^2) \right)= \frac1{10} \sum_{i=1}^{10} \left (2E(X_i) - E(X_i^2) \right)\end{aligned}</math></p>
E(\widehat{\pi}_{1})&=&E \left(\frac1{10} \sum_{i=1}^{10} (2X_i - X_i^2) \right)= \frac1{10} \sum_{i=1}^{10} \left (2E(X_i) - E(X_i^2) \right)\end{align}</math></p>


{|class="wikitable"
{|class="wikitable"
Zeile 487: Zeile 487:
|}
|}


<p><math>\begin{aligned}
<p><math>\begin{align}
\displaystyle E(X_{i}^2)&=& 0 \cdot \pi_{0}+ 1 \cdot \pi_{1} + 4 \cdot \pi_{2}=\pi_{1} + 4 \cdot \pi_{2}\\
\displaystyle E(X_{i}^2)&=& 0 \cdot \pi_{0}+ 1 \cdot \pi_{1} + 4 \cdot \pi_{2}=\pi_{1} + 4 \cdot \pi_{2}\\
E(\widehat{\pi}_{1})&=&\frac1{10} \sum_{i=1}^{10} \left (2(\pi_1 + 2\pi_2) - (\pi_1 + 4\pi_2) \right)= \frac1{10} \sum_{i=1}^{10} \pi_1 = \pi_1\\
E(\widehat{\pi}_{1})&=&\frac1{10} \sum_{i=1}^{10} \left (2(\pi_1 + 2\pi_2) - (\pi_1 + 4\pi_2) \right)= \frac1{10} \sum_{i=1}^{10} \pi_1 = \pi_1\\
E(\widehat{\pi}_{2}) &=& E \left(\frac1{20} \sum_{i=1}^{10}(X_i^2 - X_i)\right)=  \frac1{20} \sum_{i=1}^{10} \left (E(X_i^2) - E(X_i) \right)\\
E(\widehat{\pi}_{2}) &=& E \left(\frac1{20} \sum_{i=1}^{10}(X_i^2 - X_i)\right)=  \frac1{20} \sum_{i=1}^{10} \left (E(X_i^2) - E(X_i) \right)\\
&=& \frac1{20} \sum_{i=1}^{10} \left((\pi_1 + 4\pi_2) - (\pi_1 + 2\pi_2) \right) =\frac1{20} \sum_{i=1}^{10} 2\pi_2=\pi_2\end{aligned}</math></p></li>
&=& \frac1{20} \sum_{i=1}^{10} \left((\pi_1 + 4\pi_2) - (\pi_1 + 2\pi_2) \right) =\frac1{20} \sum_{i=1}^{10} 2\pi_2=\pi_2\end{align}</math></p></li>
<li><p>Schätzfunktion: <math>\widehat{\pi}_{0} = 1 - \widehat{\pi}_{1} - \widehat{\pi}_{2}</math></p>
<li><p>Schätzfunktion: <math>\widehat{\pi}_{0} = 1 - \widehat{\pi}_{1} - \widehat{\pi}_{2}</math></p>
<p><math>\begin{aligned}
<p><math>\begin{align}
E(\widehat{\pi}_{0}) &=& E(1 - \widehat{\pi}_{1} - \widehat{\pi}_{2})\\
E(\widehat{\pi}_{0}) &=& E(1 - \widehat{\pi}_{1} - \widehat{\pi}_{2})\\
&=& 1 - E(\widehat{\pi}_{1}) - E(\widehat{\pi}_{2})\\
&=& 1 - E(\widehat{\pi}_{1}) - E(\widehat{\pi}_{2})\\
&=& 1 - \pi_{1} - \pi_{2} = \pi_{0}\end{aligned}</math></p></li>
&=& 1 - \pi_{1} - \pi_{2} = \pi_{0}\end{align}</math></p></li>
<li><p>Stichprobe:</p>
<li><p>Stichprobe:</p>


Zeile 544: Zeile 544:
|}
|}


<p><math>\begin{aligned}
<p><math>\begin{align}
\widehat{\pi}_{1} &=& \frac1{10}\sum_{i=1}^{10} (2x_i-x_i^2) = \frac{0+0+1+0+0+0+0+1+0+0}{10}=0,2\\
\widehat{\pi}_{1} &=& \frac1{10}\sum_{i=1}^{10} (2x_i-x_i^2) = \frac{0+0+1+0+0+0+0+1+0+0}{10}=0,2\\
\widehat{\pi}_{2} &=& \frac1{20}\sum_{i=1}^{10} (x_i^2-x_i) = \frac{0+2+0+0+0+2+2+0+0+2}{20}=0,4\\
\widehat{\pi}_{2} &=& \frac1{20}\sum_{i=1}^{10} (x_i^2-x_i) = \frac{0+2+0+0+0+2+2+0+0+2}{20}=0,4\\
\widehat{\pi}_{0} &=& 1-0,2-0,4=0,4\\\end{aligned}</math></p></li></ul>
\widehat{\pi}_{0} &=& 1-0,2-0,4=0,4\\\end{align}</math></p></li></ul>


* ja, führen Sie den Beweis!
* ja, führen Sie den Beweis!

Aktuelle Version vom 15. Juli 2020, 15:36 Uhr

500 Haushalte

Haushaltsgröße , ist beliebig verteilt mit und
: Durchschnittliche Haushaltsgröße bei einer Zufallsstichprobe vom Umfang
ist approximativ (zentraler Grenzwertsatz; ) –verteilt.
, ,

,

Absolventen der Fakultät


Antibiotikumtabletten

Grundgesamtheit: : “Wirkstoffgehalt je Tablette”;
: “Durchschnittlicher Wirkstoffgehalt je Tablette bei einer einfachen Zufallsstichprobe vom Umfang ”;

Apfelsinen

  • “Gewicht der Apfelsinen”
  • Einfache Zufallsstichprobe mit
  • Summe des Gewichts:

Allgemeines Konfidenzintervall für den Mittelwert der Grundgesamtheit: aus , da bekannt

Schätzintervall für den Mittelwert der Grundgesamtheit:

Grundgesamtheit: X: Gewicht einer Apfelsine; Normalverteilung und g bekannt; : Durchschnittsgewicht einer Apfelsine in einer einfachen Zufallsstichprobe vom Umfang , ; ;
Schätzintervall: ; ;

Brikett



; ; ; ;

Dichotome Grundgesamtheit

;

Dioxinausstoß

: Dioxinausstoß [kg/min],
: Durchschnittlicher Dioxinausstoß [kg/min],

  • Berechnung der statistischen Sicherheit für ein gegebenes Schwankungsintervall



?




Mit einer Wahrscheinlichkeit von 99,73% liegt der Durchschnitt einer Stichprobe vom Umfang zwischen 4 und 6 kg/min Dioxinausstoß.

  • symmetrisches Schwankungsintervall gesucht bei gegebener statistischer Sicherheit












Um mit einer Sicherheit von 95% den durchschnittlichen Dioxinausstoß auf 0,5 kg/min genau schätzen zu können, benötigt man einen Stichprobenumfang von mindestens 16 Zeitintervallen.


aus

  • ; ; ; kg/min;

Eintagsfliegen

Lebensdauer von Eintagsfliegen, und unbekannt
(kleine Stichprobe); ; ,
Schätzintervall:

(aus t-Verteilung);

Erwartungstreue

  • einfache Zufallsstichprobe
  • unabhängig