Bivariate Statistik/Lösungen: Unterschied zwischen den Versionen

Aus MM*Stat

Wechseln zu: Navigation, Suche
(Die Seite wurde neu angelegt: „ ===Verspätungen=== <math>r_{S}</math> = - 0,8 ===Sportveranstaltungen=== * <math>\chi^{2}</math> = 14,4797; <math>C</math> = 0,2146; <math>C_{korr}</math>…“)
 
Keine Bearbeitungszusammenfassung
Zeile 225: Zeile 225:
Fall B: <math>R_E=4</math>, <math>R_1=1</math><br />
Fall B: <math>R_E=4</math>, <math>R_1=1</math><br />
<math>r_s=1-\frac{6\sum d_i^2}{n(n^2-1)}=1-\frac{6\cdot(9+16+9+9+9+4)}{6\cdot35}=1-\frac{56}{35}=-0,6<0</math>
<math>r_s=1-\frac{6\sum d_i^2}{n(n^2-1)}=1-\frac{6\cdot(9+16+9+9+9+4)}{6\cdot35}=1-\frac{56}{35}=-0,6<0</math>
===Außentemperatur und Dauer eines Weges===
<math>{r_{xy}} = \frac{5\cdot(-1000)}{\displaystyle\sqrt{(5*1000)(5*7225-175^2)}} = \frac{-5000}{5224} = -0,953</math>

Version vom 18. April 2019, 08:06 Uhr

Verspätungen

= - 0,8

Sportveranstaltungen

  • = 14,4797; = 0,2146; = 0,3035
  • = 0
  • = 0
  • Zusammenhang unter a) nur scheinbar; er wird durch den Einfluss des Lebensalters vorgetäuscht. Bei der Ausschaltung dieses Einflusses durch die Untersuchung altersspezifischer Teilgesamtheiten zeigt sich, dass in Wirklichkeit Unabhängigkeit besteht.

Old Faithful

Variable : Dauer einer Eruption (in Minuten)
Variable : Zeit zwischen zwei Eruptionen (in Minuten)
Beide Variablen sind metrischen Skalenniveaus
Bravais–Pearson–Korrelationskoeffizient.

Alter und Preis eines PKWs

Gegeben:
Es ist . Daraus folgt:
Ferner ist: ( und die Kovarianz haben das gleiche Vorzeichen);

Koeffizienten Vergleich

  1. H) Median
  2. F) Korr. Kontingenzkoeffizient, K) Quadratische Kontingenz
  3. D) Interquartilsabstand
  4. B) Bravais–Pearson KK, D) IQR, G) Kovarianz, L) Spannweite, O) Standardabweichung, P) Varianz

GM

X – Wert der Aktie
– Kurs der Aktie – Wechselkurs
Dann istzu bestimmen. Da die Kovarianz Null ist, folgt aus der Kovarianzzerlegung
dass der obige Wert dem Produkt der Mittelwerte von und entspricht. Mit den marginalen Häufigkeiten berechnet man:
Randverteilung von :
Randverteilung von :
EUR/$ $
damit resultiert der durchschnittliche Wert der GM-Aktie zu EUR.

Teesorten

= 0,5714

Buttersorten

Spearman’scher Rangkorrelationskoeffizient:


Tarifvereinbarungen

lineare Transformation:

Cafeteria

Frauen Männer
Mensa
Cafeteria



Unabhängigkeit:

Relationen der Merkmalsausprägungen

Da Relationen angegeben sind, sind die beiden Merkmale und ordinal skaliert; Der Spearman’sche Rangkorrelationskoeffizient ist ein geeignetes Maß

i 1 2 3 4 5
1 3 5 2 4
3 1 4 2 5
2 2 1 0 1


Stellung im Beruf

  •  

    Geschlecht RV
    Beamte(r) Angestellte(r) Arbeiter(in) Geschlecht
    weiblich 15 20 5 40
    männlich 10 30 20 60
    RV Beruf 25 50 25 n=100
  • Bedingte Verteilung

    Beamte Angestellte Arbeiter
    w 0,375 0,5 0,125
  • Bedingte Verteilung

    Angestellte
    w 0,4
    m 0,6
  • Die Merkmale sind nicht unabhängig, da z.B. ist.

Tekolom und IBBM - Teil II

Tekolom–Aktie , IBBM–Aktie , Portfolio

Mensaessen

Es sei die Preis/Leistungs–Rangzahl von Eintopf und die von Essen 1.
Fall A: ,

Fall B: ,

Außentemperatur und Dauer eines Weges