Grafische Darstellung stetiger Merkmale/Beispiel: Nettoeinkommen (Histogramm und Stengel-Blatt-Diagramm): Unterschied zwischen den Versionen
Aus MM*Stat
(Die Seite wurde neu angelegt: „===Nettoeinkommen (Histogramm und Stengel-Blatt-Diagramm)=== '''Histogramm''' {| |statistische Einheit: |befragte, in Privathaushalten lebende deutsche S…“) |
K (Siskosth verschob die Seite Graphische Darstellung eindimensionaler Verteilungen/Nettoeinkommen (Histogramm und Stengel-Blatt-Diagramm) nach [[Graphische Darstellung eindimensionaler Verteilungen/Beispiel: Nettoeinkommen (Histogramm und Stengel-Bla…) |
(kein Unterschied)
|
Version vom 23. Januar 2019, 16:49 Uhr
Nettoeinkommen (Histogramm und Stengel-Blatt-Diagramm)
Histogramm
statistische Einheit: | befragte, in Privathaushalten lebende deutsche Staatsangehörige im Alter von mindestens 18 Jahren |
statistisches Merkmal: | monatliches persönliches Nettoeinkommen (€) |
Anzahl der Beobachtungen : | 2000 |
Für die Erstellung jedes der nachfolgenden Histogramme wird von einer gleichen Klassenbreite der Einkommensklassen ausgegangen, so dass auf der Ordinatenachse die absoluten Häufigkeiten abgetragen wurden.
Zur Erstellung von Histogrammen, die entsprechende Details erkennen lassen, musste die Maßstabseinteilung der Ordinatenachse mit kleiner werdender Klassenbreite verändert werden. Beim Vergleich der Histogramme ist diese unterschiedliche Skalierung der Ordinatenachse zu beachten.
Die obenstehenden Grafiken verdeutlichen die Auswirkung unterschiedlicher Klassenbreiten auf das Erscheinungsbild. Durch das Variieren der Klassenbreiten soll erreicht werden, dass das Histogramm möglichst glatt (im Sinne eines gedachten Kurvenverlaufes durch die Höhe der Rechtecke über den Klassenmitten) wird, ohne jedoch die Besonderheiten der Daten aus den Augen zu verlieren.
Darstellung nach Geschlecht, bei einer Klassenbreite von 500 €:
Stengel-Blatt-Diagramm
Das Stengel-Blatt-Diagramm wird für alle 2000 Beobachtungen angegeben.
BEFR.: NETTOEINKOMMEN, OFFENE ABFRAGE Stem-and-Leaf Plot Frequency Stem & Leaf 24,00 0 . 00111111 138,00 0 . 2222222222222333333333333333333333333333333333 194,00 0 . 44444444444444444444444444444444445555555555555555555555555555555 213,00 0 . 66666666666666666666666666666666666666777777777777777777777777777777777 211,00 0 . 8888888888888888888888888888888888899999999999999999999999999999999999 212,00 1 . 0000000000000000000000000000000000000000001111111111111111111111111111 200,00 1 . 2222222222222222222222222222222222222223333333333333333333333333333 181,00 1 . 4444444444444444444444444555555555555555555555555555555555555 132,00 1 . 66666666666666666666666666677777777777777777 88,00 1 . 88888888888888888899999999999 110,00 2 . 0000000000000000000000000000000011111 51,00 2 . 22222222222233333 56,00 2 . 4444555555555555555 23,00 2 . 6667777 20,00 2 . 8888899 46,00 3 . 0000000000000011 15,00 3 . 22223 86,00 Extremes (>=3400) Stem width: 1000 Each leaf: 3 case(s)
Bei der obigen "großen" Version des Stengel-Blatt-Diagramms ist jeder Stamm auf fünf Zeilen aufgeteilt. Die erste Zeile nimmt die Blätter 0 und 1, die zweite Zeile die Blätter 2 und 3, die dritte Zeile die Blätter 4 und 5, die vierte Zeile die Blätter 6 und 7 und die fünfte Zeile die Blätter 8 und 9 auf.
Da die Stamm-Einheit (stem width) 1000 ist, sind die Blatt-Ziffern die Hunderter. Jedes Blatt beinhaltet 3 Fälle (Beobachtungen). Es gibt z.B. 8 befragte Personen mit einem Nettoeinkommen von 2400 bis unter 2500.
Insgesamt werden 86 extrem große Werte angezeigt, von denen einige aufgelistet werden.
"&" als Blatt beinhaltet eine restliche Anzahl von Beobachtungen - bei dem Stamm von 4 mit einem t sind z.B. 4 Fälle (befragte Personen) registriert.
Davon haben 2 Personen (da jedes Blatt 2 Fälle angibt) ein monatliches Nettoeinkommen von 4200 bis unter 4300 bei der Befragung angegeben.
Von den restlichen 2 Personen hat eine ein Nettoeinkommen von 4200 bis unter 4300 und die andere ein Nettoeinkommen 4300 bis unter 4400.
Es kann also weder ein Blatt mit der Ziffer 2 noch ein Blatt mit der Ziffer 3 angegeben werden, da jedes (in diesem Beispiel) zwei Fälle repräsentiert. Dies wird durch "&" gekennzeichnet.