|
|
(10 dazwischenliegende Versionen von 2 Benutzern werden nicht angezeigt) |
Zeile 1: |
Zeile 1: |
| | [[Kategorie:Aufgaben]] |
| ===Alter und Händlerverkaufspreis=== | | ===Alter und Händlerverkaufspreis=== |
|
| |
|
Zeile 8: |
Zeile 9: |
| ===Arbeitslosenquoten=== | | ===Arbeitslosenquoten=== |
|
| |
|
| <math>\sum_{t=0}^3t=6\quad\sum_{t=0}^3x_t=45,2\quad\sum_{t=0}^3tx_t=71,5;\quad\sum_{t=0}^3t^2=14</math> <math>\begin{aligned} | | <math>\sum_{t=0}^3t=6\quad\sum_{t=0}^3x_t=45,2\quad\sum_{t=0}^3tx_t=71,5;\quad\sum_{t=0}^3t^2=14</math> <math>\begin{align} |
| b&=&\frac{(T+1)\sum tx_t-\sum x_t\sum t}{(T+1)\sum t^2-(\sum t)^2}\\ | | b&=&\frac{(T+1)\sum tx_t-\sum x_t\sum t}{(T+1)\sum t^2-(\sum t)^2}\\ |
| &=&\frac{4\cdot71,5-45,2\cdot6}{4\cdot14-6^2}=\frac{286-271,2}{56-36}=\frac{14,8}{20}=0,74\\ | | &=&\frac{4\cdot71,5-45,2\cdot6}{4\cdot14-6^2}=\frac{286-271,2}{56-36}=\frac{14,8}{20}=0,74\\ |
| a&=&\frac{\sum x_t}{T+1}-b\frac{\sum t}{T+1}=\frac{45,2}{4}-0,74\cdot\frac{6}{4}=11,3-1,11=10,19\\ | | a&=&\frac{\sum x_t}{T+1}-b\frac{\sum t}{T+1}=\frac{45,2}{4}-0,74\cdot\frac{6}{4}=11,3-1,11=10,19\\ |
| \hat{y}_i&=&10,19+0,74\cdot x_i\\ | | \hat{y}_i&=&10,19+0,74\cdot x_i\\ |
| \hat{y}_4&=&10,19+0,74\cdot x_4= 10,19+0,74\cdot4=13,15\\\end{aligned}</math> | | \hat{y}_4&=&10,19+0,74\cdot x_4= 10,19+0,74\cdot4=13,15\\\end{align}</math> |
|
| |
|
| ===Gesamtkosten und Produktionsmenge=== | | ===Gesamtkosten und Produktionsmenge=== |
Zeile 21: |
Zeile 22: |
| ===Gewinn eines Unternehmens=== | | ===Gewinn eines Unternehmens=== |
|
| |
|
| <math>\hat{y}_i=a+bx_i</math> <math>\begin{aligned} | | <math>\hat{y}_i=a+bx_i</math> <math>\begin{align} |
| a & = & \frac{\sum y_i\sum x_i^2-\sum x_i\sum x_i y_i}{n\sum x_i^2-\sum x_i\sum x_i}\\ | | a & = & \frac{\sum y_i\sum x_i^2-\sum x_i\sum x_i y_i}{n\sum x_i^2-\sum x_i\sum x_i}\\ |
| & = & \frac{0-55\cdot99}{10\cdot385-55^2}=-6,6\\ \\ | | & = & \frac{0-55\cdot99}{10\cdot385-55^2}=-6,6\\ \\ |
| b & = & \frac{n\sum x_iy_i-\sum x_i\sum y_i}{n\sum x_i^2-\sum x_i\sum x_i}\\ | | b & = & \frac{n\sum x_iy_i-\sum x_i\sum y_i}{n\sum x_i^2-\sum x_i\sum x_i}\\ |
| & = & \frac{10\cdot99-0}{10\cdot385-55^2}=1,2\\\end{aligned}</math> <math>\hat{y}_i=-6,6+1,2x_i</math> | | & = & \frac{10\cdot99-0}{10\cdot385-55^2}=1,2\\\end{align}</math> <math>\hat{y}_i=-6,6+1,2x_i</math> |
|
| |
|
| ===Hypothekenzinssatz=== | | ===Hypothekenzinssatz=== |
Zeile 172: |
Zeile 173: |
| |} | | |} |
|
| |
|
| <math>\begin{aligned} | | <math>\begin{align} |
| b_1&=&\frac{n\sum x_iy_i-\sum x_i\sum y_i}{n\sum x_i^2-\sum x_i\sum x_i}=\frac{6\cdot11771-60\cdot1422}{6\cdot756-60^2}=\frac{-14694}{936}=-15,699\\ | | b_1&=&\frac{n\sum x_iy_i-\sum x_i\sum y_i}{n\sum x_i^2-\sum x_i\sum x_i}=\frac{6\cdot11771-60\cdot1422}{6\cdot756-60^2}=\frac{-14694}{936}=-15,699\\ |
| b_0&=&\overline{y}-b_1\overline{x}=\frac{1422}{6}-(-15,699)\frac{60}{6}=393,99\\ | | b_0&=&\overline{y}-b_1\overline{x}=\frac{1422}{6}-(-15,699)\frac{60}{6}=393,99\\ |
| \hat{y}_i&=&b_0+b_1x_i=393,99-15,699\cdot1=378,291 | | \hat{y}_i&=&b_0+b_1x_i=393,99-15,699\cdot1=378,291 |
| \end{aligned}</math> | | \end{align}</math> |
|
| |
|
| ===Konsumausgaben=== | | ===Konsumausgaben=== |
Zeile 196: |
Zeile 197: |
|
| |
|
| ===Kunstdünger=== | | ===Kunstdünger=== |
| | [[Datei:Kunstduenger.xlsx]] |
|
| |
|
| * ja | | * ja |
Zeile 204: |
Zeile 206: |
| ===Ökonomische Variablen=== | | ===Ökonomische Variablen=== |
|
| |
|
| <math>\begin{aligned} | | <math>\begin{align} |
| b_1&=&\frac{n\sum x_iy_i-\sum x_i\sum y_i}{n\sum x_i^2-\sum x_i\sum x_i}=\frac{10\cdot304-40\cdot70}{10\cdot180-40\cdot40}=\frac{240}{200}=1,2\\ | | b_1&=&\frac{n\sum x_iy_i-\sum x_i\sum y_i}{n\sum x_i^2-\sum x_i\sum x_i}=\frac{10\cdot304-40\cdot70}{10\cdot180-40\cdot40}=\frac{240}{200}=1,2\\ |
| b_0&=&\frac{\sum y_i\sum x_i^2-\sum x_i\sum x_iy_i}{n\sum x_i^2-\sum x_i\sum x_i}=\frac{70\cdot180-40\cdot304}{10\cdot180-40\cdot40}=\frac{440}{200}=2,2\\ | | b_0&=&\frac{\sum y_i\sum x_i^2-\sum x_i\sum x_iy_i}{n\sum x_i^2-\sum x_i\sum x_i}=\frac{70\cdot180-40\cdot304}{10\cdot180-40\cdot40}=\frac{440}{200}=2,2\\ |
| b_0&=&\overline{y}-b_1\overline{x}=7-1,2\cdot4=2,2 | | b_0&=&\overline{y}-b_1\overline{x}=7-1,2\cdot4=2,2 |
| \end{aligned}</math> | | \end{align}</math> |
|
| |
|
| ===Quadratmetermiete=== | | ===Quadratmetermiete=== |
Zeile 307: |
Zeile 309: |
|
| |
|
| <math>\displaystyle b_1 = | | <math>\displaystyle b_1 = |
| \frac{10\cdot\nump[2]{7390}-\nump[2]{700}\cdot\nump[2]{110}} | | \frac{10\cdot 7390 - 700 \cdot 110} |
| {10\cdot\nump[2]{53600}-\nump[2]{700}^2}=\nump{-0.0673913043478261}</math>,<br /> | | {10\cdot 53600- 700}^2 = -0.0674 </math>,<br /> |
| <math>\displaystyle b_0 =\frac{\nump[2]{110}}{10}- | | <math>\displaystyle b_0 =\frac{ 110 }{10}- |
| \frac{\nump[2]{700}}{10}\cdot\nump{-0.0673913043478261} | | \frac{ 700}{10}\cdot -0.0674 |
| =\nump{15.7173913043478}</math>,<br /> | | = 15.7174</math>,<br /> |
| | |
| ===Querschnittsanalyse von 11 Unternehmen=== | | ===Querschnittsanalyse von 11 Unternehmen=== |
| | [[Datei:Querschnittsanalyse.xlsx]] |
|
| |
|
| * <math>\displaystyle\sum_{i=1}^{11} y_i = \nump[2]{191}</math>, <math>\displaystyle\sum_{i=1}^{11} y_i^2 = \nump[2]{5183.64909090909}</math> | | * <math>\displaystyle\sum_{i=1}^{11} y_i = 191</math>, <math>\displaystyle\sum_{i=1}^{11} y_i^2 = 5183.6491 </math> |
| * <math>\displaystyle\sum_{i=1}^{11} x_{i1} = \nump[2]{1671.9}</math>, <math>\displaystyle\sum_{i=1}^{11} x_{i1}^2 = \nump[2]{259297.25}</math>, <math>\displaystyle\sum_{i=1}^{11} x_{i1}y_i = \nump[2]{29829.7}</math>,<br /> | | * <math>\displaystyle\sum_{i=1}^{11} x_{i1} = 1671.9</math>, <math>\displaystyle\sum_{i=1}^{11} x_{i1}^2 = 259297.25</math>, <math>\displaystyle\sum_{i=1}^{11} x_{i1}y_i = 29829.7</math>,<br /> |
| <math>\displaystyle b_1^{(1)} = | | <math>\displaystyle b_1^{(1)} = |
| \frac{11\cdot\nump[2]{29829.7}-\nump[2]{1671.9}\cdot\nump[2]{191}} | | \frac{11\cdot 29829.7- 1671.9 \cdot 191} |
| {11\cdot\nump[2]{259297.25}-\nump[2]{1671.9}^2}=\nump{0.15422270096145}</math>,<br /> | | {11\cdot 259297.25-1671.9^2}=0.1542 </math>,<br /> |
| <math>\displaystyle b_0^{(1)} =\frac{\nump[2]{191}}{11}-\frac{\nump[2]{1671.9}}{11\cdot\nump{0.15422270096145}} | | <math>\displaystyle b_0^{(1)} =\frac{191}{11}-\frac{1671.9}{11\cdot 0.15422270096145} |
| =\nump{-6.07681215794991}</math>,<br /> | | =-6.0768 </math>,<br /> |
| <math>\displaystyle R^2_{y1} = | | <math>\displaystyle R^2_{y1} = |
| \frac{(11\cdot\nump[2]{29829.7}-\nump[2]{1671.9}\cdot\nump[2]{191})^2} | | \frac{(11\cdot 29829.7- 1671.9\cdot 191)^2} |
| {(11\cdot\nump[2]{259297.25}-\nump[2]{1671.9}^2)\cdot(11\cdot\nump[2]{3446.92}-\nump[2]{191}^2)}=\nump{0.945010582888399}</math>,<br /> | | {(11\cdot 259297.25- 1671.9^2)\cdot(11\cdot 3446.92-191^2)}= 0.9450</math>,<br /> |
| <math>\displaystyle\hat{y}_1 = \nump{-6.07681215794991} + \nump{0.15422270096145} x_1</math> | | <math>\displaystyle\hat{y}_1 = -6.0768 + 0.1542 x_1</math> |
| * <math>\displaystyle\sum_{i=1}^{11} x_{i2} = \nump[2]{1197.4}</math>, <math>\displaystyle\sum_{i=1}^{11} x_{i2}^2 = \nump[2]{132804.82}</math>, <math>\displaystyle\sum_{i=1}^{11} x_{i2}y_i = \nump[2]{21344.04}</math>,<br /> | | * <math>\displaystyle\sum_{i=1}^{11} x_{i2} = 1197.4</math>, <math>\displaystyle\sum_{i=1}^{11} x_{i2}^2 = 132804.82</math>, <math>\displaystyle\sum_{i=1}^{11} x_{i2}y_i = 21344.04</math>,<br /> |
| <math>\displaystyle b_1^{(2)} = | | <math>\displaystyle b_1^{(2)} = \frac{11\cdot 21344.04- 1197.4\cdot 191}{11\cdot 132804.82}-1197.4^2= 0.2245</math>,<br /> |
| \frac{11\cdot\nump[2]{21344.04}-\nump[2]{1197.4}\cdot\nump[2]{191}} | | <math>\displaystyle b_0^{(2)} =\frac{ 191}{11}-\frac{1197.4}{11\cdot 0.2245} |
| {11\cdot\nump[2]{132804.82}-\nump[2]{1197.4}^2}=\nump{0.224506447180232}</math>,<br /> | | = -7.0749</math>,<br /> |
| <math>\displaystyle b_0^{(2)} =\frac{\nump[2]{191}}{11}-\frac{\nump[2]{1197.4}}{11\cdot\nump{0.224506447180232}} | |
| =\nump{-7.0749108957827}</math>,<br /> | |
| <math>\displaystyle R^2_{y2} = | | <math>\displaystyle R^2_{y2} = |
| \frac{(11\cdot\nump[2]{21344.04}-\nump[2]{1197.4}\cdot\nump[2]{191})^2} | | \frac{(11\cdot 21344.04- 1197.4\cdot 191)^2} |
| {(11\cdot\nump[2]{132804.82}-\nump[2]{1197.4}^2)\cdot(11\cdot\nump[2]{3446.92}-\nump[2]{191}^2)}=\nump{0.951302111015713}</math>,<br /> | | {(11\cdot 132804.82- 1197.4^2)\cdot(11\cdot 3446.92- 191^2)}= 0.9513</math>,<br /> |
| <math>\displaystyle\hat{y}21 = \nump{-7.0749108957827} + \nump{0.224506447180232} x_2</math> | | <math>\displaystyle\hat{y}21 = -7.0749 + 0.2245 x_2</math> |
| * <math>\displaystyle\sum_{i=1}^{11} x_{i3} = \nump[2]{29.2}</math>, <math>\displaystyle\sum_{i=1}^{11} x_{i3}^2 = \nump[2]{88.44}</math>, <math>\displaystyle\sum_{i=1}^{11} x_{i3}y_i = \nump[2]{519.52}</math>,<br /> | | * <math>\displaystyle\sum_{i=1}^{11} x_{i3} = 29.2</math>, <math>\displaystyle\sum_{i=1}^{11} x_{i3}^2 = 88.44 </math>, <math>\displaystyle\sum_{i=1}^{11} x_{i3}y_i = 519.52</math>,<br /> |
| <math>\displaystyle b_1^{(3)} = | | <math>\displaystyle b_1^{(3)} = |
| \frac{11\cdot\nump[2]{519.52}-\nump[2]{29.2}\cdot\nump[2]{191}} | | \frac{11\cdot 519.52 - 29.2 \cdot 191} |
| {11\cdot\nump[2]{88.44}-\nump[2]{29.2}^2}=\nump{1.1440931780366}</math>,<br /> | | {11\cdot 88.44} - 29.2 ^2 = 1.1441 </math>,<br /> |
| <math>\displaystyle b_0^{(3)} =\frac{\nump[2]{191}}{11}-\frac{\nump[2]{29.2}}{11\cdot\nump{1.1440931780366}} | | <math>\displaystyle b_0^{(3)} =\frac{ 191}{11}-\frac{29.2}{11\cdot1.1441} |
| =\nump{14.3265890183028}</math>,<br /> | | = 14.3266 </math>,<br /> |
| <math>\displaystyle R^2_{y3} = | | <math>\displaystyle R^2_{y3} = |
| \frac{(11\cdot\nump[2]{519.52}-\nump[2]{29.2}\cdot\nump[2]{191})^2} | | \frac{(11\cdot 519.52- 29.2 \cdot 191)^2} |
| {(11\cdot\nump[2]{88.44}-\nump[2]{29.2}^2)\cdot(11\cdot\nump[2]{3446.92}-\nump[2]{191}^2)}=\nump{0.109632430628514}</math>,<br /> | | {(11\cdot 88.44- 29.2^2)\cdot(11\cdot 3446.92- 191^2)}= 0.1096</math>,<br /> |
| <math>\displaystyle\hat{y}_3 = \nump{14.3265890183028} + \nump{1.1440931780366} x_3</math> | | <math>\displaystyle\hat{y}_3 = 14.3266 + 1.1441 x_3</math> |
| * <math>r_{y1} = \sqrt{R^2_{y1}} = \nump{0.97211654799638}</math>; <math>r_{y2} = \sqrt{R^2_{y2}} = \nump{0.975347174607951}</math>; <math>r_{y3} = \sqrt{R^2_{y3}} = \nump{0.331107883670132}</math>; | | * <math>r_{y1} = \sqrt{R^2_{y1}} = 0.9721</math>; <math>r_{y2} = \sqrt{R^2_{y2}} = 0.9753 </math>; <math>r_{y3} = \sqrt{R^2_{y3}} = 0.3311</math>; |
| * <math>\displaystyle\sum_{i=1}^{11} x_{i1} = \nump[2]{1671.9}</math>, <math>\displaystyle\sum_{i=1}^{11} x_{i1}^2 = \nump[2]{259297.25}</math>,<br /> | | * <math>\displaystyle\sum_{i=1}^{11} x_{i1} = 1671.9</math>, <math>\displaystyle\sum_{i=1}^{11} x_{i1}^2 = 259297.25</math>,<br /> |
| <math>\displaystyle\sum_{i=1}^{11} x_{i2} = \nump[2]{1197.4}</math>, <math>\displaystyle\sum_{i=1}^{11} x_{i2}^2 = \nump[2]{132804.82}</math>,<br /> | | <math>\displaystyle\sum_{i=1}^{11} x_{i2} = 1197.4</math>, <math>\displaystyle\sum_{i=1}^{11} x_{i2}^2 = 132804.82</math>,<br /> |
| <math>\displaystyle\sum_{i=1}^{11} x_{i1}x_{i2} = \nump[2]{185557.02}</math>,<br /> | | <math>\displaystyle\sum_{i=1}^{11} x_{i1}x_{i2} = 185557.02</math>,<br /> |
| <math>\displaystyle r_{12} = \frac{11\cdot\nump[2]{185557.02}-\nump[2]{1671.9}\cdot\nump[2]{1197.4}}{\sqrt{(11\cdot \nump[2]{259297.25}-\nump[2]{1671.9}^2)\cdot(11\cdot \nump[2]{132804.82}-\nump[2]{1197.4}^2)}}</math><br /> | | <math>\displaystyle r_{12} = \frac{11\cdot 185557.02-1671.9 \cdot 1197.4}{\sqrt{(11\cdot 259297.25-1671.9^2)\cdot(11\cdot 132804.82-1197.4^2)}}</math><br /> |
| <math>\displaystyle r_{12} = \nump{0.997315801525063}</math><br /> | | <math>\displaystyle r_{12} = 0.9973</math><br /> |
| <math>\displaystyle\sum_{i=1}^{11} x_{i1} = \nump[2]{1671.9}</math>, <math>\displaystyle\sum_{i=1}^{11} x_{i1}^2 = \nump[2]{259297.25}</math>,<br /> | | <math>\displaystyle\sum_{i=1}^{11} x_{i1} = 1671.9</math>, <math>\displaystyle\sum_{i=1}^{11} x_{i1}^2 = 259297.25</math>,<br /> |
| <math>\displaystyle\sum_{i=1}^{11} x_{i3} = \nump[2]{29.2}</math>, <math>\displaystyle\sum_{i=1}^{11} x_{i3}^2 = \nump[2]{88.44}</math>,<br /> | | <math>\displaystyle\sum_{i=1}^{11} x_{i3} = 29.2</math>, <math>\displaystyle\sum_{i=1}^{11} x_{i3}^2 = 88.44</math>,<br /> |
| <math>\displaystyle\sum_{i=1}^{11} x_{i1}x_{i3} = \nump[2]{4478.28}</math>,<br /> | | <math>\displaystyle\sum_{i=1}^{11} x_{i1}x_{i3} = 4478.28</math>,<br /> |
| <math>\displaystyle r_{12} = \frac{11\cdot\nump[2]{4478.28}-\nump[2]{1671.9}\cdot\nump[2]{29.2}}{\sqrt{(11\cdot \nump[2]{259297.25}-\nump[2]{1671.9}^2)\cdot(11\cdot \nump[2]{88.44}-\nump[2]{29.2}^2)}}</math><br /> | | <math>\displaystyle r_{12} = \frac{11\cdot 4478.28-1671.9\cdot 29.2}{\sqrt{(11\cdot 259297.25-1671.9^2)\cdot(11\cdot 88.44-29.2^2)}}</math><br /> |
| <math>\displaystyle r_{12} = \nump{0.168679650013795}</math><br /> | | <math>\displaystyle r_{12} = 0.16868 </math><br /> |
| <math>\displaystyle\sum_{i=1}^{11} x_{i2} = \nump[2]{1197.4}</math>, <math>\displaystyle\sum_{i=1}^{11} x_{i2}^2 = \nump[2]{132804.82}</math>,<br /> | | <math>\displaystyle\sum_{i=1}^{11} x_{i2} = 1197.4</math>, <math>\displaystyle\sum_{i=1}^{11} x_{i2}^2 = 132804.82</math>,<br /> |
| <math>\displaystyle\sum_{i=1}^{11} x_{i3} = \nump[2]{29.2}</math>, <math>\displaystyle\sum_{i=1}^{11} x_{i3}^2 = \nump[2]{88.44}</math>,<br /> | | <math>\displaystyle\sum_{i=1}^{11} x_{i3} = 29.2</math>, <math>\displaystyle\sum_{i=1}^{11} x_{i3}^2 = 88.44 </math>,<br /> |
| <math>\displaystyle\sum_{i=1}^{11} x_{i2}x_{i3} = \nump[2]{3203.89}</math>,<br /> | | <math>\displaystyle\sum_{i=1}^{11} x_{i2}x_{i3} = 3203.89</math>,<br /> |
| <math>\displaystyle r_{12} = \frac{11\cdot\nump[2]{3203.89}-\nump[2]{1197.4}\cdot\nump[2]{29.2}}{\sqrt{(11\cdot \nump[2]{132804.82}-\nump[2]{1197.4}^2)\cdot(11\cdot \nump[2]{88.44}-\nump[2]{29.2}^2)}}</math><br /> | | <math>\displaystyle r_{12} = \frac{11\cdot 3203.89- 1197.4 \cdot 29.2}{\sqrt{(11\cdot 132804.82-1197.4^2)\cdot(11\cdot 88.44-29.2^2)}}</math><br /> |
| <math>\displaystyle r_{12} = \nump{0.15446347321087}</math><br /> | | <math>\displaystyle r_{12} = 0.1545</math><br /> |
| | |
|
| |
|
| ===Umsatz und Werbeetat=== | | ===Umsatz und Werbeetat=== |
Zeile 414: |
Zeile 415: |
| |} | | |} |
|
| |
|
| <math>\begin{aligned} | | <math>\begin{align} |
| b_1&=&\frac{n\sum x_iy_i-\sum x_i\sum y_i}{n\sum x_i^2-\sum x_i\sum x_i}\\ | | b_1&=&\frac{n\sum x_iy_i-\sum x_i\sum y_i}{n\sum x_i^2-\sum x_i\sum x_i}\\ |
| &=&\frac{6\cdot2452-150\cdot96}{6\cdot3810-150^2}=\frac{14712-14400}{22860-22500}=\frac{312}{360}=0,866666\\ | | &=&\frac{6\cdot2452-150\cdot96}{6\cdot3810-150^2}=\frac{14712-14400}{22860-22500}=\frac{312}{360}=0,866666\\ |
| &=&0,867\end{aligned}</math> | | &=&0,867\end{align}</math> |
|
| |
|
| ===Zusätzliche statistische Einheit=== | | ===Zusätzliche statistische Einheit=== |
Alter und Händlerverkaufspreis
Gegeben:
Es ist . Daraus folgt:
Ferner ist: ( und die Kovarianz haben das gleiche Vorzeichen);
Arbeitslosenquoten
Gesamtkosten und Produktionsmenge
Gewinn eines Unternehmens
Hypothekenzinssatz
|
|
|
|
|
|
|
|
1
|
6
|
3000
|
-1
|
1.0
|
500
|
250000.0
|
-500
|
2
|
5
|
3200
|
-2
|
4.0
|
700
|
490000.0
|
-1400.0
|
3
|
7
|
2500
|
0
|
0.0
|
0
|
0.0
|
0.0
|
4
|
7
|
2300
|
0
|
0.0
|
-200
|
40000.0
|
-0.0
|
5
|
8
|
2000
|
1
|
1.0
|
-500
|
250000.0
|
-500
|
6
|
9
|
2000
|
2
|
4.0
|
-500
|
250000.0
|
-1000.0
|
Summe
|
42
|
15000
|
0
|
10.0
|
0
|
1280000.0
|
-3400
|
Mittel
|
7
|
2500
|
0
|
1.7
|
0
|
213333.3
|
-556.7
|
- ,
- Mio EUR, Mio EUR
Immobiliensachverständiger
Objekt
|
Alter
|
Preis
|
|
|
1
|
15
|
190
|
2850
|
225
|
2
|
12
|
210
|
2520
|
144
|
3
|
3
|
400
|
1200
|
9
|
4
|
17
|
125
|
2125
|
289
|
5
|
5
|
300
|
1500
|
25
|
6
|
8
|
197
|
1576
|
64
|
|
60
|
1422
|
11771
|
756
|
Konsumausgaben
- = 211,82 + 0,813
- 2488,22 EUR Konsumausgaben
Konsumausgaben und verfügbares Einkommen
Kosten und Output
Gegeben:
Gesucht:
Kunstdünger
Datei:Kunstduenger.xlsx
- ja
- = 19,93 + 5,0526
- 75,5086 dt
- = 0,9753
Ökonomische Variablen
Quadratmetermiete
|
|
|
|
|
|
1
|
40
|
12
|
1 600
|
144,0
|
480
|
2
|
40
|
12
|
1 600
|
144,0
|
480
|
3
|
40
|
15
|
1 600
|
225,0
|
600
|
4
|
60
|
12
|
3 600
|
144,0
|
720
|
5
|
80
|
10
|
6 400
|
100,0
|
800
|
6
|
80
|
10
|
6 400
|
100,0
|
800
|
7
|
90
|
9
|
8 100
|
81,0
|
810
|
8
|
90
|
10
|
8 100
|
100,0
|
900
|
9
|
90
|
10
|
8 100
|
100,0
|
900
|
10
|
90
|
10
|
8 100
|
100,0
|
900
|
Summe
|
700
|
110
|
53 600
|
1 238,0
|
7 390
|
Mittel
|
70
|
11
|
5 360
|
123,8
|
739
|
,
,
Querschnittsanalyse von 11 Unternehmen
Datei:Querschnittsanalyse.xlsx
- ,
- , , ,
,
,
,
- , , ,
,
,
,
- , , ,
,
,
,
- ; ; ;
- , ,
, ,
,
, ,
, ,
,
, ,
, ,
,
Umsatz und Werbeetat
Schätzung des Parameters in der linearen Regressionsfunktion .
Filiale
|
1
|
2
|
3
|
4
|
5
|
6
|
|
|
20
|
16
|
18
|
17
|
12
|
13
|
96
|
|
29
|
25
|
28
|
26
|
20
|
22
|
150
|
|
841
|
625
|
784
|
676
|
400
|
484
|
3810
|
|
580
|
400
|
504
|
442
|
240
|
286
|
2452
|
Zusätzliche statistische Einheit
Lösung g)