Regression/Lösungen: Unterschied zwischen den Versionen
Aus MM*Stat
(Die Seite wurde neu angelegt: „===Alter und Händlerverkaufspreis=== Gegeben: <math>s_{xy}=-5,4\qquad s_y^2=4\qquad R_{yx}^2=0,81</math><br /> Es ist <math>r_{yx}=s_{yx}/s_xs_y</math>. Dara…“) |
|||
(12 dazwischenliegende Versionen von 2 Benutzern werden nicht angezeigt) | |||
Zeile 1: | Zeile 1: | ||
[[Kategorie:Aufgaben]] | |||
===Alter und Händlerverkaufspreis=== | ===Alter und Händlerverkaufspreis=== | ||
Zeile 8: | Zeile 9: | ||
===Arbeitslosenquoten=== | ===Arbeitslosenquoten=== | ||
<math>\sum_{t=0}^3t=6\quad\sum_{t=0}^3x_t=45,2\quad\sum_{t=0}^3tx_t=71,5;\quad\sum_{t=0}^3t^2=14</math> <math>\begin{ | <math>\sum_{t=0}^3t=6\quad\sum_{t=0}^3x_t=45,2\quad\sum_{t=0}^3tx_t=71,5;\quad\sum_{t=0}^3t^2=14</math> <math>\begin{align} | ||
b&=&\frac{(T+1)\sum tx_t-\sum x_t\sum t}{(T+1)\sum t^2-(\sum t)^2}\\ | b&=&\frac{(T+1)\sum tx_t-\sum x_t\sum t}{(T+1)\sum t^2-(\sum t)^2}\\ | ||
&=&\frac{4\cdot71,5-45,2\cdot6}{4\cdot14-6^2}=\frac{286-271,2}{56-36}=\frac{14,8}{20}=0,74\\ | &=&\frac{4\cdot71,5-45,2\cdot6}{4\cdot14-6^2}=\frac{286-271,2}{56-36}=\frac{14,8}{20}=0,74\\ | ||
a&=&\frac{\sum x_t}{T+1}-b\frac{\sum t}{T+1}=\frac{45,2}{4}-0,74\cdot\frac{6}{4}=11,3-1,11=10,19\\ | a&=&\frac{\sum x_t}{T+1}-b\frac{\sum t}{T+1}=\frac{45,2}{4}-0,74\cdot\frac{6}{4}=11,3-1,11=10,19\\ | ||
\hat{y}_i&=&10,19+0,74\cdot x_i\\ | \hat{y}_i&=&10,19+0,74\cdot x_i\\ | ||
\hat{y}_4&=&10,19+0,74\cdot x_4= 10,19+0,74\cdot4=13,15\\\end{ | \hat{y}_4&=&10,19+0,74\cdot x_4= 10,19+0,74\cdot4=13,15\\\end{align}</math> | ||
===Gesamtkosten und Produktionsmenge=== | ===Gesamtkosten und Produktionsmenge=== | ||
Zeile 21: | Zeile 22: | ||
===Gewinn eines Unternehmens=== | ===Gewinn eines Unternehmens=== | ||
<math>\hat{y}_i=a+bx_i</math> <math>\begin{ | <math>\hat{y}_i=a+bx_i</math> <math>\begin{align} | ||
a & = & \frac{\sum y_i\sum x_i^2-\sum x_i\sum x_i y_i}{n\sum x_i^2-\sum x_i\sum x_i}\\ | a & = & \frac{\sum y_i\sum x_i^2-\sum x_i\sum x_i y_i}{n\sum x_i^2-\sum x_i\sum x_i}\\ | ||
& = & \frac{0-55\cdot99}{10\cdot385-55^2}=-6,6\\ \\ | & = & \frac{0-55\cdot99}{10\cdot385-55^2}=-6,6\\ \\ | ||
b & = & \frac{n\sum x_iy_i-\sum x_i\sum y_i}{n\sum x_i^2-\sum x_i\sum x_i}\\ | b & = & \frac{n\sum x_iy_i-\sum x_i\sum y_i}{n\sum x_i^2-\sum x_i\sum x_i}\\ | ||
& = & \frac{10\cdot99-0}{10\cdot385-55^2}=1,2\\\end{ | & = & \frac{10\cdot99-0}{10\cdot385-55^2}=1,2\\\end{align}</math> <math>\hat{y}_i=-6,6+1,2x_i</math> | ||
===Hypothekenzinssatz=== | ===Hypothekenzinssatz=== | ||
* <math>\displaystyle r = \frac | {|class="wikitable" | ||
* <math>\displaystyle b_1 = \frac | | | ||
!<math> x_i </math> | |||
!<math> y_i </math> | |||
!<math> x_i - \bar{x} </math> | |||
!<math> (x_i - \bar{x})^2 </math> | |||
!<math> y_i - \bar{y} </math> | |||
!<math> (y_i - \bar{y})^2 </math> | |||
!<math> (x_i - \bar{x}) (y_i - \bar{y}) </math> | |||
|- | |||
|align="right"|1 | |||
|align="right"|6 | |||
|align="right"|3000 | |||
|align="right"| -1 | |||
|align="right"|1.0 | |||
|align="right"|500 | |||
|align="right"|250000.0 | |||
|align="right"| -500 | |||
|- | |||
|align="right"|2 | |||
|align="right"|5 | |||
|align="right"|3200 | |||
|align="right"| -2 | |||
|align="right"|4.0 | |||
|align="right"|700 | |||
|align="right"|490000.0 | |||
|align="right"| -1400.0 | |||
|- | |||
|align="right"|3 | |||
|align="right"|7 | |||
|align="right"|2500 | |||
|align="right"|0 | |||
|align="right"|0.0 | |||
|align="right"|0 | |||
|align="right"|0.0 | |||
|align="right"|0.0 | |||
|- | |||
|align="right"|4 | |||
|align="right"|7 | |||
|align="right"|2300 | |||
|align="right"|0 | |||
|align="right"|0.0 | |||
|align="right"| -200 | |||
|align="right"|40000.0 | |||
|align="right"| -0.0 | |||
|- | |||
|align="right"|5 | |||
|align="right"|8 | |||
|align="right"|2000 | |||
|align="right"|1 | |||
|align="right"|1.0 | |||
|align="right"| -500 | |||
|align="right"|250000.0 | |||
| align="right"|-500 | |||
|- | |||
|align="right"|6 | |||
|align="right"|9 | |||
|align="right"|2000 | |||
|align="right"|2 | |||
|align="right"|4.0 | |||
| align="right"|-500 | |||
|align="right"|250000.0 | |||
|align="right"| -1000.0 | |||
|- | |||
|Summe | |||
|align="right"|42 | |||
|align="right"|15000 | |||
|align="right"|0 | |||
|align="right"|10.0 | |||
|align="right"|0 | |||
|align="right"|1280000.0 | |||
|align="right"| -3400 | |||
|- | |||
|Mittel | |||
|align="right"|7 | |||
|align="right"|2500 | |||
|align="right"|0 | |||
|align="right"|1.7 | |||
|align="right"|0 | |||
|align="right"|213333.3 | |||
|align="right"| -556.7 | |||
|} | |||
* <math>\displaystyle r = \frac{-3400}{\sqrt{10\cdot1280000}}= -0.9503</math> | |||
* <math>\displaystyle b_1 = \frac{-3400}{10}= | |||
-340</math>, <math>\displaystyle b_0 = 2500-(-340)\cdot7= 4880</math><br /> | |||
<math>\displaystyle \widehat{y} =4880 -340\cdot x</math> | <math>\displaystyle \widehat{y} =4880 -340\cdot x</math> | ||
* <math>\displaystyle R^2= r^2 = | * <math>\displaystyle R^2= r^2 = -0.9503^2 = 0.9031</math> | ||
* <math>\displaystyle 4880 -340\cdot 4 = 3520</math> Mio EUR, <math>\displaystyle 4880 -340\cdot 7,5 = 2330</math> Mio EUR | * <math>\displaystyle 4880 -340\cdot 4 = 3520</math> Mio EUR, <math>\displaystyle 4880 -340\cdot 7,5 = 2330</math> Mio EUR | ||
Zeile 89: | Zeile 173: | ||
|} | |} | ||
<math>\begin{ | <math>\begin{align} | ||
b_1&=&\frac{n\sum x_iy_i-\sum x_i\sum y_i}{n\sum x_i^2-\sum x_i\sum x_i}=\frac{6\cdot11771-60\cdot1422}{6\cdot756-60^2}=\frac{-14694}{936}=-15,699\\ | b_1&=&\frac{n\sum x_iy_i-\sum x_i\sum y_i}{n\sum x_i^2-\sum x_i\sum x_i}=\frac{6\cdot11771-60\cdot1422}{6\cdot756-60^2}=\frac{-14694}{936}=-15,699\\ | ||
b_0&=&\overline{y}-b_1\overline{x}=\frac{1422}{6}-(-15,699)\frac{60}{6}=393,99\\ | b_0&=&\overline{y}-b_1\overline{x}=\frac{1422}{6}-(-15,699)\frac{60}{6}=393,99\\ | ||
\hat{y}_i&=&b_0+b_1x_i=393,99-15,699\cdot1=378,291 | \hat{y}_i&=&b_0+b_1x_i=393,99-15,699\cdot1=378,291 | ||
\end{ | \end{align}</math> | ||
===Konsumausgaben=== | ===Konsumausgaben=== | ||
Zeile 113: | Zeile 197: | ||
===Kunstdünger=== | ===Kunstdünger=== | ||
[[Datei:Kunstduenger.xlsx]] | |||
* ja | * ja | ||
Zeile 121: | Zeile 206: | ||
===Ökonomische Variablen=== | ===Ökonomische Variablen=== | ||
<math>\begin{ | <math>\begin{align} | ||
b_1&=&\frac{n\sum x_iy_i-\sum x_i\sum y_i}{n\sum x_i^2-\sum x_i\sum x_i}=\frac{10\cdot304-40\cdot70}{10\cdot180-40\cdot40}=\frac{240}{200}=1,2\\ | b_1&=&\frac{n\sum x_iy_i-\sum x_i\sum y_i}{n\sum x_i^2-\sum x_i\sum x_i}=\frac{10\cdot304-40\cdot70}{10\cdot180-40\cdot40}=\frac{240}{200}=1,2\\ | ||
b_0&=&\frac{\sum y_i\sum x_i^2-\sum x_i\sum x_iy_i}{n\sum x_i^2-\sum x_i\sum x_i}=\frac{70\cdot180-40\cdot304}{10\cdot180-40\cdot40}=\frac{440}{200}=2,2\\ | b_0&=&\frac{\sum y_i\sum x_i^2-\sum x_i\sum x_iy_i}{n\sum x_i^2-\sum x_i\sum x_i}=\frac{70\cdot180-40\cdot304}{10\cdot180-40\cdot40}=\frac{440}{200}=2,2\\ | ||
b_0&=&\overline{y}-b_1\overline{x}=7-1,2\cdot4=2,2 | b_0&=&\overline{y}-b_1\overline{x}=7-1,2\cdot4=2,2 | ||
\end{ | \end{align}</math> | ||
===Quadratmetermiete=== | ===Quadratmetermiete=== | ||
Zeile 224: | Zeile 309: | ||
<math>\displaystyle b_1 = | <math>\displaystyle b_1 = | ||
\frac{10\cdot | \frac{10\cdot 7390 - 700 \cdot 110} | ||
{10\cdot | {10\cdot 53600- 700}^2 = -0.0674 </math>,<br /> | ||
<math>\displaystyle b_0 =\frac | <math>\displaystyle b_0 =\frac{ 110 }{10}- | ||
\frac | \frac{ 700}{10}\cdot -0.0674 | ||
= | = 15.7174</math>,<br /> | ||
===Querschnittsanalyse von 11 Unternehmen=== | ===Querschnittsanalyse von 11 Unternehmen=== | ||
[[Datei:Querschnittsanalyse.xlsx]] | |||
* <math>\displaystyle\sum_{i=1}^{11} y_i = | * <math>\displaystyle\sum_{i=1}^{11} y_i = 191</math>, <math>\displaystyle\sum_{i=1}^{11} y_i^2 = 5183.6491 </math> | ||
* <math>\displaystyle\sum_{i=1}^{11} x_{i1} = | * <math>\displaystyle\sum_{i=1}^{11} x_{i1} = 1671.9</math>, <math>\displaystyle\sum_{i=1}^{11} x_{i1}^2 = 259297.25</math>, <math>\displaystyle\sum_{i=1}^{11} x_{i1}y_i = 29829.7</math>,<br /> | ||
<math>\displaystyle b_1^{(1)} = | <math>\displaystyle b_1^{(1)} = | ||
\frac{11\cdot | \frac{11\cdot 29829.7- 1671.9 \cdot 191} | ||
{11\cdot | {11\cdot 259297.25-1671.9^2}=0.1542 </math>,<br /> | ||
<math>\displaystyle b_0^{(1)} =\frac | <math>\displaystyle b_0^{(1)} =\frac{191}{11}-\frac{1671.9}{11\cdot 0.15422270096145} | ||
= | =-6.0768 </math>,<br /> | ||
<math>\displaystyle R^2_{y1} = | <math>\displaystyle R^2_{y1} = | ||
\frac{(11\cdot | \frac{(11\cdot 29829.7- 1671.9\cdot 191)^2} | ||
{(11\cdot | {(11\cdot 259297.25- 1671.9^2)\cdot(11\cdot 3446.92-191^2)}= 0.9450</math>,<br /> | ||
<math>\displaystyle\hat{y}_1 = | <math>\displaystyle\hat{y}_1 = -6.0768 + 0.1542 x_1</math> | ||
* <math>\displaystyle\sum_{i=1}^{11} x_{i2} = | * <math>\displaystyle\sum_{i=1}^{11} x_{i2} = 1197.4</math>, <math>\displaystyle\sum_{i=1}^{11} x_{i2}^2 = 132804.82</math>, <math>\displaystyle\sum_{i=1}^{11} x_{i2}y_i = 21344.04</math>,<br /> | ||
<math>\displaystyle b_1^{(2)} = | <math>\displaystyle b_1^{(2)} = \frac{11\cdot 21344.04- 1197.4\cdot 191}{11\cdot 132804.82}-1197.4^2= 0.2245</math>,<br /> | ||
\frac{11\cdot | <math>\displaystyle b_0^{(2)} =\frac{ 191}{11}-\frac{1197.4}{11\cdot 0.2245} | ||
{11\cdot | = -7.0749</math>,<br /> | ||
<math>\displaystyle b_0^{(2)} =\frac | |||
= | |||
<math>\displaystyle R^2_{y2} = | <math>\displaystyle R^2_{y2} = | ||
\frac{(11\cdot | \frac{(11\cdot 21344.04- 1197.4\cdot 191)^2} | ||
{(11\cdot | {(11\cdot 132804.82- 1197.4^2)\cdot(11\cdot 3446.92- 191^2)}= 0.9513</math>,<br /> | ||
<math>\displaystyle\hat{y}21 = | <math>\displaystyle\hat{y}21 = -7.0749 + 0.2245 x_2</math> | ||
* <math>\displaystyle\sum_{i=1}^{11} x_{i3} = | * <math>\displaystyle\sum_{i=1}^{11} x_{i3} = 29.2</math>, <math>\displaystyle\sum_{i=1}^{11} x_{i3}^2 = 88.44 </math>, <math>\displaystyle\sum_{i=1}^{11} x_{i3}y_i = 519.52</math>,<br /> | ||
<math>\displaystyle b_1^{(3)} = | <math>\displaystyle b_1^{(3)} = | ||
\frac{11\cdot | \frac{11\cdot 519.52 - 29.2 \cdot 191} | ||
{11\cdot | {11\cdot 88.44} - 29.2 ^2 = 1.1441 </math>,<br /> | ||
<math>\displaystyle b_0^{(3)} =\frac | <math>\displaystyle b_0^{(3)} =\frac{ 191}{11}-\frac{29.2}{11\cdot1.1441} | ||
= | = 14.3266 </math>,<br /> | ||
<math>\displaystyle R^2_{y3} = | <math>\displaystyle R^2_{y3} = | ||
\frac{(11\cdot | \frac{(11\cdot 519.52- 29.2 \cdot 191)^2} | ||
{(11\cdot | {(11\cdot 88.44- 29.2^2)\cdot(11\cdot 3446.92- 191^2)}= 0.1096</math>,<br /> | ||
<math>\displaystyle\hat{y}_3 = | <math>\displaystyle\hat{y}_3 = 14.3266 + 1.1441 x_3</math> | ||
* <math>r_{y1} = \sqrt{R^2_{y1}} = | * <math>r_{y1} = \sqrt{R^2_{y1}} = 0.9721</math>; <math>r_{y2} = \sqrt{R^2_{y2}} = 0.9753 </math>; <math>r_{y3} = \sqrt{R^2_{y3}} = 0.3311</math>; | ||
* <math>\displaystyle\sum_{i=1}^{11} x_{i1} = | * <math>\displaystyle\sum_{i=1}^{11} x_{i1} = 1671.9</math>, <math>\displaystyle\sum_{i=1}^{11} x_{i1}^2 = 259297.25</math>,<br /> | ||
<math>\displaystyle\sum_{i=1}^{11} x_{i2} = | <math>\displaystyle\sum_{i=1}^{11} x_{i2} = 1197.4</math>, <math>\displaystyle\sum_{i=1}^{11} x_{i2}^2 = 132804.82</math>,<br /> | ||
<math>\displaystyle\sum_{i=1}^{11} x_{i1}x_{i2} = | <math>\displaystyle\sum_{i=1}^{11} x_{i1}x_{i2} = 185557.02</math>,<br /> | ||
<math>\displaystyle r_{12} = \frac{11\cdot | <math>\displaystyle r_{12} = \frac{11\cdot 185557.02-1671.9 \cdot 1197.4}{\sqrt{(11\cdot 259297.25-1671.9^2)\cdot(11\cdot 132804.82-1197.4^2)}}</math><br /> | ||
<math>\displaystyle r_{12} = | <math>\displaystyle r_{12} = 0.9973</math><br /> | ||
<math>\displaystyle\sum_{i=1}^{11} x_{i1} = | <math>\displaystyle\sum_{i=1}^{11} x_{i1} = 1671.9</math>, <math>\displaystyle\sum_{i=1}^{11} x_{i1}^2 = 259297.25</math>,<br /> | ||
<math>\displaystyle\sum_{i=1}^{11} x_{i3} = | <math>\displaystyle\sum_{i=1}^{11} x_{i3} = 29.2</math>, <math>\displaystyle\sum_{i=1}^{11} x_{i3}^2 = 88.44</math>,<br /> | ||
<math>\displaystyle\sum_{i=1}^{11} x_{i1}x_{i3} = | <math>\displaystyle\sum_{i=1}^{11} x_{i1}x_{i3} = 4478.28</math>,<br /> | ||
<math>\displaystyle r_{12} = \frac{11\cdot | <math>\displaystyle r_{12} = \frac{11\cdot 4478.28-1671.9\cdot 29.2}{\sqrt{(11\cdot 259297.25-1671.9^2)\cdot(11\cdot 88.44-29.2^2)}}</math><br /> | ||
<math>\displaystyle r_{12} = | <math>\displaystyle r_{12} = 0.16868 </math><br /> | ||
<math>\displaystyle\sum_{i=1}^{11} x_{i2} = | <math>\displaystyle\sum_{i=1}^{11} x_{i2} = 1197.4</math>, <math>\displaystyle\sum_{i=1}^{11} x_{i2}^2 = 132804.82</math>,<br /> | ||
<math>\displaystyle\sum_{i=1}^{11} x_{i3} = | <math>\displaystyle\sum_{i=1}^{11} x_{i3} = 29.2</math>, <math>\displaystyle\sum_{i=1}^{11} x_{i3}^2 = 88.44 </math>,<br /> | ||
<math>\displaystyle\sum_{i=1}^{11} x_{i2}x_{i3} = | <math>\displaystyle\sum_{i=1}^{11} x_{i2}x_{i3} = 3203.89</math>,<br /> | ||
<math>\displaystyle r_{12} = \frac{11\cdot | <math>\displaystyle r_{12} = \frac{11\cdot 3203.89- 1197.4 \cdot 29.2}{\sqrt{(11\cdot 132804.82-1197.4^2)\cdot(11\cdot 88.44-29.2^2)}}</math><br /> | ||
<math>\displaystyle r_{12} = | <math>\displaystyle r_{12} = 0.1545</math><br /> | ||
===Umsatz und Werbeetat=== | ===Umsatz und Werbeetat=== | ||
Zeile 331: | Zeile 415: | ||
|} | |} | ||
<math>\begin{ | <math>\begin{align} | ||
b_1&=&\frac{n\sum x_iy_i-\sum x_i\sum y_i}{n\sum x_i^2-\sum x_i\sum x_i}\\ | b_1&=&\frac{n\sum x_iy_i-\sum x_i\sum y_i}{n\sum x_i^2-\sum x_i\sum x_i}\\ | ||
&=&\frac{6\cdot2452-150\cdot96}{6\cdot3810-150^2}=\frac{14712-14400}{22860-22500}=\frac{312}{360}=0,866666\\ | &=&\frac{6\cdot2452-150\cdot96}{6\cdot3810-150^2}=\frac{14712-14400}{22860-22500}=\frac{312}{360}=0,866666\\ | ||
&=&0,867\end{ | &=&0,867\end{align}</math> | ||
===Zusätzliche statistische Einheit=== | ===Zusätzliche statistische Einheit=== |
Aktuelle Version vom 15. Juli 2020, 10:40 Uhr
Alter und Händlerverkaufspreis
Gegeben:
Es ist . Daraus folgt:
Ferner ist: ( und die Kovarianz haben das gleiche Vorzeichen);
Arbeitslosenquoten
Gesamtkosten und Produktionsmenge
Gewinn eines Unternehmens
Hypothekenzinssatz
1 | 6 | 3000 | -1 | 1.0 | 500 | 250000.0 | -500 |
2 | 5 | 3200 | -2 | 4.0 | 700 | 490000.0 | -1400.0 |
3 | 7 | 2500 | 0 | 0.0 | 0 | 0.0 | 0.0 |
4 | 7 | 2300 | 0 | 0.0 | -200 | 40000.0 | -0.0 |
5 | 8 | 2000 | 1 | 1.0 | -500 | 250000.0 | -500 |
6 | 9 | 2000 | 2 | 4.0 | -500 | 250000.0 | -1000.0 |
Summe | 42 | 15000 | 0 | 10.0 | 0 | 1280000.0 | -3400 |
Mittel | 7 | 2500 | 0 | 1.7 | 0 | 213333.3 | -556.7 |
- ,
- Mio EUR, Mio EUR
Immobiliensachverständiger
Objekt | Alter | Preis | ||
---|---|---|---|---|
1 | 15 | 190 | 2850 | 225 |
2 | 12 | 210 | 2520 | 144 |
3 | 3 | 400 | 1200 | 9 |
4 | 17 | 125 | 2125 | 289 |
5 | 5 | 300 | 1500 | 25 |
6 | 8 | 197 | 1576 | 64 |
60 | 1422 | 11771 | 756 |
Konsumausgaben
- = 211,82 + 0,813
- 2488,22 EUR Konsumausgaben
Konsumausgaben und verfügbares Einkommen
Kosten und Output
Gegeben:
Gesucht:
Kunstdünger
- ja
- = 19,93 + 5,0526
- 75,5086 dt
- = 0,9753
Ökonomische Variablen
Quadratmetermiete
1 | 40 | 12 | 1 600 | 144,0 | 480 |
2 | 40 | 12 | 1 600 | 144,0 | 480 |
3 | 40 | 15 | 1 600 | 225,0 | 600 |
4 | 60 | 12 | 3 600 | 144,0 | 720 |
5 | 80 | 10 | 6 400 | 100,0 | 800 |
6 | 80 | 10 | 6 400 | 100,0 | 800 |
7 | 90 | 9 | 8 100 | 81,0 | 810 |
8 | 90 | 10 | 8 100 | 100,0 | 900 |
9 | 90 | 10 | 8 100 | 100,0 | 900 |
10 | 90 | 10 | 8 100 | 100,0 | 900 |
Summe | 700 | 110 | 53 600 | 1 238,0 | 7 390 |
Mittel | 70 | 11 | 5 360 | 123,8 | 739 |
,
,
Querschnittsanalyse von 11 Unternehmen
Datei:Querschnittsanalyse.xlsx
- ,
- , , ,
,
,
,
- , , ,
,
,
,
- , , ,
,
,
,
- ; ; ;
- , ,
, ,
,
, ,
, ,
,
, ,
, ,
,
Umsatz und Werbeetat
Schätzung des Parameters in der linearen Regressionsfunktion .
Filiale | 1 | 2 | 3 | 4 | 5 | 6 | |
---|---|---|---|---|---|---|---|
20 | 16 | 18 | 17 | 12 | 13 | 96 | |
29 | 25 | 28 | 26 | 20 | 22 | 150 | |
841 | 625 | 784 | 676 | 400 | 484 | 3810 | |
580 | 400 | 504 | 442 | 240 | 286 | 2452 |
Zusätzliche statistische Einheit
Lösung g)