Bivariate Statistik/Lösungen: Unterschied zwischen den Versionen

Aus MM*Stat

Wechseln zu: Navigation, Suche
Zeile 67: Zeile 67:
===Buttersorten===
===Buttersorten===


Spearman’scher Rangkorrelationskoeffizient:<br />
 
<math>r_S=1-(6\cdot\sum d_i^2)/[n\cdot(n^2-1)]</math><br />
 
<math>r_S=1-(6\cdot8)/(7\cdot48)=1-48/336=1-0,1429=08571\approx0,857</math><br />
<math>
\begin{array}{l}
r_{S}=1-\frac{6 \cdot \sum d_{i}^{2}}{n\cdot\left(n^{2}-1\right)} \\
r_{S}=1-(6 \cdot 8) /(7 \cdot 48)=1-48 / 336=1-0,1429=08571 \approx 0,857
\end{array}
</math>


===Tarifvereinbarungen===
===Tarifvereinbarungen===

Version vom 15. Juli 2020, 15:38 Uhr

Verspätungen

= - 0,8

Sportveranstaltungen

Datei:Sportveranstaltungen.xlsx


  • = 14,4797; = 0,2146; = 0,3035
  • = 0
  • = 0
  • Zusammenhang unter a) nur scheinbar; er wird durch den Einfluss des Lebensalters vorgetäuscht. Bei der Ausschaltung dieses Einflusses durch die Untersuchung altersspezifischer Teilgesamtheiten zeigt sich, dass in Wirklichkeit Unabhängigkeit besteht.

Old Faithful

Variable : Dauer einer Eruption (in Minuten)
Variable : Zeit zwischen zwei Eruptionen (in Minuten)
Beide Variablen sind metrischen Skalenniveaus
Bravais–Pearson–Korrelationskoeffizient.

Alter und Preis eines PKWs

Gegeben:
Es ist . Daraus folgt:
Ferner ist: ( und die Kovarianz haben das gleiche Vorzeichen);

Koeffizienten Vergleich

  1. H) Median
  2. F) Korr. Kontingenzkoeffizient, K) Quadratische Kontingenz
  3. D) Interquartilsabstand
  4. B) Bravais–Pearson KK, D) IQR, G) Kovarianz, L) Spannweite, O) Standardabweichung, P) Varianz

GM

X – Wert der Aktie
– Kurs der Aktie – Wechselkurs
Dann istzu bestimmen. Da die Kovarianz Null ist, folgt aus der Kovarianzzerlegung
dass der obige Wert dem Produkt der Mittelwerte von und entspricht. Mit den marginalen Häufigkeiten berechnet man:
Randverteilung von :
Randverteilung von :
EUR/$ $
damit resultiert der durchschnittliche Wert der GM-Aktie zu EUR.

Teesorten

= 0,5714

Buttersorten

Tarifvereinbarungen

lineare Transformation:

Cafeteria

Frauen Männer
Mensa
Cafeteria



Unabhängigkeit:

Relationen der Merkmalsausprägungen

Da Relationen angegeben sind, sind die beiden Merkmale und ordinal skaliert; Der Spearman’sche Rangkorrelationskoeffizient ist ein geeignetes Maß

i 1 2 3 4 5
1 3 5 2 4
3 1 4 2 5
2 2 1 0 1


Stellung im Beruf

Datei:2 74 Stellung im Beruf.xlsx

  •  

    Geschlecht RV
    Beamte(r) Angestellte(r) Arbeiter(in) Geschlecht
    weiblich 15 20 5 40
    männlich 10 30 20 60
    RV Beruf 25 50 25 n=100
  • Bedingte Verteilung

    Beamte Angestellte Arbeiter
    w 0,375 0,5 0,125
  • Bedingte Verteilung

    Angestellte
    w 0,4
    m 0,6
  • Beobachtete Gemeinsame Verteilung (relative Häufigkeiten)

    Beamte(r) Angestellte(r) Arbeiter(in) RV Geschlecht
    weiblich 0.15 0.2 0.05 0.4
    männlich 0.1 0.3 0.2 0.6
    RV Stellung 0.25 0.5 0.25 1

  • Theoretische Werte der Gemeinsamen Verteilung, wenn Unabhängigkeit angenommen wird

    Beamte(r) Angestellte(r) Arbeiter(in) RV Geschlecht
    weiblich 0.1 0.2 0.1 0.4
    männlich 0.15 0.3 0.15 0.6
    RV Stellung 0.25 0.5 0.25 1

  • Die Merkmale sind nicht unabhängig, da z.B. ist.

Tekolom und IBBM - Teil II

Tekolom–Aktie , IBBM–Aktie , Portfolio

Mensaessen

Es sei die Preis/Leistungs–Rangzahl von Eintopf und die von Essen 1.
Fall A: ,

Fall B: ,

Außentemperatur und Dauer eines Weges

Körpergröße

  • : “Körpergröße in cm”; = 128 cm; = 26 cm; = 5,1 cm;

= 0,0398
:“Körpergröße in Zoll”; = 51,2 Zoll; = 4,16 Zoll; = 2,04 Zoll; = 0,0398

  • mit und ;

;