Chi-Quadrat-Unabhängigkeitstest: Unterschied zwischen den Versionen

Aus MM*Stat

Wechseln zu: Navigation, Suche
 
Zeile 205: Zeile 205:
  
 
Bei dieser Entscheidung besteht die Möglichkeit, einen [[Fehler 2. Art]] <math>(\mbox{''}H_{0}\mbox{''}| H_{1})</math> zu begehen, wenn in Wirklichkeit die [[Alternativhypothese]] richtig ist.
 
Bei dieser Entscheidung besteht die Möglichkeit, einen [[Fehler 2. Art]] <math>(\mbox{''}H_{0}\mbox{''}| H_{1})</math> zu begehen, wenn in Wirklichkeit die [[Alternativhypothese]] richtig ist.
 
=={{Vorlage:Beispiele}}==
 
 
===Mängel und Alter===
 
 
Es wird vermutet, dass die Anzahl der festgestellten Mängel an einem Pkw und das Alter des Pkw [[Unabhängigkeit (stochastisch)|stochastisch unabhängig]] sind.
 
 
Um diese Annahme zu überprüfen, wird ein Chi-Quadrat-Unabhängigkeitstest auf einem [[Signifikanzniveau]] von <math>\alpha = 0,05</math> durchgeführt.
 
 
Für die [[Zufallsvariable]] <math>X\;</math>: "Anzahl der Mängel am Pkw" werden die [[Realisation]]en <math>x_{1}</math> = "kein Mangel", <math>x_{2}</math> = "1 Mangel" und <math>x_{3}</math> = "2 oder mehr Mängel" und
 
 
für die [[Zufallsvariable]] <math>Y\;</math>: "Alter des Pkw" die [[Realisation]]en <math>y_{1}</math> = "bis einschließlich 1 Jahr", <math>y_{2}</math> = "über 1 Jahr bis einschließlich 2 Jahre" und <math>y_{3}</math> = "2 Jahre oder älter" betrachtet.
 
 
Da stets die [[Nullhypothese]] [[Statistik|statistisch]]geprüft wird, muss die [[Unabhängigkeit (stochastisch)|Unabhängigkeit]] zwischen <math>X</math> und <math>Y</math> als <math>H_{0}</math> formuliert werden, um die gemeinsamen erwarteten [[Absolute Häufigkeit|absoluten Häufigkeiten]] ermitteln zu können, so dass das [[Hypothese]]npaar lautet:
 
 
<math>H_{0}:</math> <math>X\;</math> und <math>Y\;</math> sind [[Unabhängigkeit (stochastisch)|stochastisch unabhängig]].
 
 
<math>H_{1}:</math> <math>X\;</math>und <math>Y\;</math> sind nicht [[Unabhängigkeit (stochastisch)|stochastisch unabhängig]].
 
 
bzw.
 
 
<math>H_{0}:\;p_{kj}=p_{k\bullet }\cdot p_{\bullet j} </math> für alle Paare <math>\left( k,j\right)</math>
 
 
<math>H_{1}:\;p_{kj}\neq p_{k\bullet }\cdot p_{\bullet j}</math> für mindestens ein Paar <math>\left(k,j\right)</math>
 
 
====Teststatistik====
 
 
Es wird die [[Teststatistik]] des Chi-Quadrat-Unabhängigkeitstests verwendet:
 
 
<math>V=\sum_{k=1}^{K}\sum_{j=1}^{J}\frac{\left( H_{kj}-\widehat{e}_{kj}\right)^{2}}{\widehat{e}_{kj}}</math>
 
 
die bei Gültigkeit der [[Nullhypothese]] [[Approximation|approximativ]] [[Chi-Quadrat-Verteilung|Chi-Quadrat-verteilt]]ist mit der Anzahl der
 
[[Freiheitsgrad]]e <math>f = (K - 1)\cdot(J - 1)</math>.
 
 
Die [[Entscheidungsbereiche]] der [[Nullhypothese]] können erst nach Vorliegen der [[Stichprobe]] festgelegt werden, da
 
 
* die gemeinsamen erwarteten [[Absolute Häufigkeit|absoluten Häufigkeiten]] aus der [[Stichprobe]] zu [[Schätzung|schätzen]] sind,
 
 
* erst dann die [[Approximation]]sbedingung überprüft werden kann und ersichtlich ist, ob Werte bzw. [[Klasse]]n zusammenzufassen sind,
 
 
* erst danach die Anzahl der [[Freiheitsgrad]]e feststeht und der [[Kritischer Wert|kritische Wert]] aufgesucht werden kann.
 
 
====Entscheidungsbereiche und Prüfwert====
 
 
Bei einer konkreten Polizeikontrolle an verschiedenen Straßenstellen, wobei die Auswahl der Pkw zufällig erfolgte, wurde die Anzahl der Mängel und das Alter an 110 Pkw registriert.
 
 
Die sich aus der [[Stichprobe]] ergebenden gemeinsamen [[Absolute Häufigkeit|absoluten Häufigkeiten]] und [[Randhäufigkeit]]en sind in der folgenden Tabelle enthalten.
 
 
Gleichzeitig wurden in den Zellen dieser Tabelle die [[Schätzung|geschätzt]]en gemeinsamen [[Absolute Häufigkeit|absoluten Häufigkeiten]] bei Gültigkeit der [[Nullhypothese]] aufgenommen, die sich gemäß
 
 
<math>\widehat{e}_{kj}=\frac{h_{k\bullet }\cdot h_{\bullet j}}{n}</math>
 
 
ergeben (gerundet auf eine Dezimalstelle).
 
 
{| border="1" cellpadding="3" style="text-align:center;margin:1em 1em 1em 0; background:#f9f9f9; border:1px #AAA solid; border-collapse:collapse; empty-cells:show;"
 
|align="center" colspan="2" rowspan="2"|Mängelanzahl <math>(x_{k})</math>
 
|align="center" colspan="3"|Alter <math>(y_{j})</math>
 
|align="center" rowspan="2"|RV <math>X\;</math>
 
|-
 
|align="center"|<math><1</math>
 
|align="center"|1-2
 
|align="center"|2 oder älter
 
|-
 
|align="center" rowspan="2"|0
 
|align="center"|beobachtet
 
|align="center"|30
 
|align="center"|14
 
|align="center"|5
 
|align="center"|49
 
|-
 
|align="center"|erwartet
 
|align="center"|26,7
 
|align="center"|13,4
 
|align="center"|8,9
 
|align="center"|
 
|-
 
|align="center" rowspan="2"|1
 
|align="center"|beobachtet
 
|align="center"|18
 
|align="center"|10
 
|align="center"|4
 
|align="center"|32
 
|-
 
|align="center"|erwartet
 
|align="center"|17,5
 
|align="center"|8,7
 
|align="center"|5,8
 
|align="center"|
 
|-
 
|align="center" rowspan="2"|2 oder mehr
 
|align="center"|beobachtet
 
|align="center"|12
 
|align="center"|6
 
|align="center"|11
 
|align="center"|29
 
|-
 
|align="center"|erwartet
 
|align="center"|15,8
 
|align="center"|7,9
 
|align="center"|5,3
 
|align="center"|
 
|-
 
|align="center" colspan="2"| RV <math>Y\;</math>
 
|align="center"|60
 
|align="center"|30
 
|align="center"|20
 
|align="center"|110
 
|}
 
 
Die [[Approximation]]sbedingung ist erfüllt, da alle <math>\widehat{e}_{kj}\geq 5</math> sind. Mit <math>K = 3</math> und <math>J = 3</math> folgt für die Anzahl der [[Freiheitsgrad]]e: <math>f = (K - 1)\cdot(J - 1) =2\cdot2= 4</math>.
 
 
Für <math>P(V \leq c) = 0,95</math> und <math>f = 4</math> findet man aus der Tabelle der [[Verteilungsfunktion (stochastisch, eindimensional)|Verteilungsfunktion]] der [[Chi-Quadrat-Verteilung]] den [[Kritischer Wert|kritischen Wert]] <math>c=\chi_{1-\alpha ;(f)}^{2}=\chi_{0,95;4}^{2}=9,49</math>.
 
 
Die [[Entscheidungsbereiche]] sind damit:
 
 
[[Ablehnungsbereich der Nullhypothese|Ablehnungsbereich der]] <math>H_{0}:\; \left\{ v|v>9,49\right\}</math>
 
 
[[Nichtablehnungsbereich der Nullhypothese|Nichtablehnungsbereich der]]  <math>H_{0}:\;\left\{ v|v\leq 9,49\right\}</math>
 
 
Als [[Prüfwert]] ergibt sich:
 
 
<math>v=\frac{\left( 30-26,7\right)^{2}}{26,7}+\frac{\left( 14-13,4\right)^{2}}{13,4}+\ldots +\frac{\left( 11-5,3\right)^{2}}{5,3}=10,5</math>
 
 
====Testentscheidung====
 
 
Da <math>v</math> in den [[Ablehnungsbereich der Nullhypothese|Ablehnungsbereich der]] <math>H_{0}</math> fällt, wird die [[Nullhypothese]] abgelehnt <math>(\mbox{''}H_{1}\mbox{''})</math>.
 
 
Auf einem [[Signifikanzniveau]] von <math>\alpha =0,05</math> und basierend auf einer [[Zufallsstichprobe]] vom [[Stichprobenumfang|Umfang]] <math>n = 110</math> konnte [[Statistik|statistisch]] bewiesen werden, dass die [[Zufallsvariable]]n <math>X\;</math>: "Anzahl der Mängel am Pkw" und <math>Y\;</math>: "Alter des Pkw" [[Unabhängigkeit (stochastisch)|stochastisch unabhängig]] sind.
 
 
Bei dieser Entscheidung besteht die Möglichkeit, einen [[Fehler 1. Art]] <math>(\mbox{''}H_{1}\mbox{''}|H_0)</math> zu begehen, wenn in Wirklichkeit die [[Nullhypothese]] richtig ist.
 
 
Die [[Wahrscheinlichkeit]] für einen [[Fehler 1. Art]] entspricht dem vorgegebenen [[Signifikanzniveau]] <math>\alpha = 0,05</math>.
 

Aktuelle Version vom 22. November 2018, 15:59 Uhr

Testtheorie

Grundbegriffe der Testtheorie • Entscheidungsbereiche • Entscheidungssituationen • Zweiseitiger Test • Einseitiger Test • Gütefunktion • Test auf Mittelwert • Gauß-Test • Gütefunktion des Gauß-Tests • Einstichproben-t-Test • Test auf Anteilswert • Test auf Differenz zweier Mittelwerte • Zweistichproben-Gauß-Test • Zweistichproben-t-Test • Chi-Quadrat-Anpassungstest • Chi-Quadrat-Unabhängigkeitstest • Multiple Choice • Video • Aufgaben • Lösungen
Ablehnungsbereich der Nullhypothese • alpha-Fehler • Alternativhypothese • Anpassungstest • beta-Fehler • Entscheidungsbereiche (Chi-Quadrat-Anpassungstest) • Entscheidungsbereiche (Chi-Quadrat-Unabhängigkeitstest) • Entscheidungsbereiche (Einstichproben-t-Test) • Entscheidungsbereiche (Gauß-Test) • Entscheidungsbereiche (Test auf Anteilswert) • Entscheidungsbereiche (Zweistichproben-Gauß-Test) • Entscheidungsbereiche (Zweistichproben-t-Test) • Entscheidungssituationen (Chi-Quadrat-Anpassungstest) • Entscheidungssituationen (Chi-Quadrat-Unabhängigkeitstest) • Entscheidungssituationen (Einstichproben-t-Test) • Entscheidungssituationen (Gauß-Test) • Entscheidungssituationen (Test auf Anteilswert) • Entscheidungssituationen (Zweistichproben-Gauß-Test) • Entscheidungssituationen (Zweistichproben-t-Test) • Fehler 1. Art • Fehler 2. Art • Goodness-of-fit-Test • Gütefunktion des Tests auf Anteilswert • Hypothese • Kritischer Wert • Linksseitiger Test • Macht eines Tests • Nichtablehnungsbereich der Nullhypothese • Nullhypothese • OC-Kurve • Operationscharakteristik • Parametertest • Prüfgröße • Prüfwert • Prüfwert (Chi-Quadrat-Anpassungstest) • Prüfwert (Chi-Quadrat-Unabhängigkeitstest) • Prüfwert (Einstichproben-t-Test) • Prüfwert (Gauß-Test) • Prüfwert (Test auf Anteilswert) • Prüfwert (Zweistichproben-Gauß-Test) • Prüfwert (Zweistichproben-t-Test) • Rechtsseitiger Test • Signifikanzniveau • Statistischer Test • Testgröße • Teststatistik • Teststatistik (Chi-Quadrat-Anpassungstest) • Teststatistik (Chi-Quadrat-Unabhängigkeitstest) • Teststatistik (Einstichproben-t-Test) • Teststatistik (Gauß-Test) • Teststatistik (Test auf Anteilswert) • Teststatistik (Zweistichproben-Gauß-Test) • Teststatistik (Zweistichproben-t-Test) • Verteilungstest • Zweistichprobentest

Grundbegriffe

Chi-Quadrat-Unabhängigkeitstest

Bei einem Chi-Quadrat-Unabhängigkeitstest wird geprüft, ob zwei Zufallsvariablen stochastisch unabhängig sind. Dieser statistische Test gehört zu den nichtparametrischen Tests.

An das Skalenniveau der Zufallsvariablen werden keine Voraussetzungen gestellt.

Es sei allgemein angenommen, dass zwei Zufallsvariablen und gleichzeitig an statistischen Einheiten () beobachtet werden, wobei die Unabhängigkeit der Stichprobenziehungen vorausgesetzt wird (einfache Zufallsstichprobe).

Sind und diskrete Zufallsvariablen (darunter werden im weiteren summarisch nominalskalierte, ordinalskalierte sowie diskrete Zufallsvariablen mit sehr wenigen Ausprägungen verstanden), nehmen sie die Stichprobenrealisationen und an.

Sind und stetige Zufallsvariablen (darunter werden im weiteren auch die diskreten Zufallsvariablen mit sehr vielen bzw. unendlich vielen Ausprägungen, d.h. die genannten quasi-stetigen Zufallsvariablen, gefasst), muss eine Intervallbildung der beobachteten Werte in disjunkte, aneinander angrenzende Klassen erfolgen.

und sind dann repräsentative Klassenwerte (im Allgemeinen die Klassenmitten) und und die Anzahl der gebildeten Klassen.

Eine geeignete Darstellungsform für die beobachtete gemeinsame Häufigkeitsverteilung der zwei Zufallsvariablen ist die zweidimensionale Häufigkeitstabelle (auch als Kontingenztabelle oder Kreuztabelle bezeichnet).

Zweidimensionale Häufigkeitstabelle:

RV
RV

bezeichnet die absolute Häufigkeit für das beobachtete Wertepaar , d.h. dass den Wert bzw. einen Wert aus der -ten Klasse und gleichzeitig den Wert bzw. einen Wert aus der -ten Klasse angenommen hat:

Die letzte Spalte enthält die beobachtete Randverteilung (RV) von mit den absoluten Randhäufigkeiten .

gibt an, wie oft den Wert bzw. einen Wert aus der -ten Klasse angenommen hat, wobei es gleichgültig ist, welchen Wert aufweist.

Die letzte Zeile weist die beobachtete Randverteilung von mit den absoluten Randhäufigkeiten aus.

gibt an, wie oft den Wert bzw. einen Wert aus der -ten Klasse angenommen hat, wobei es gleichgültig ist, welchen Wert aufweist.

Für die zweidimensionale Häufigkeitstabelle gelten folgende Beziehungen:

.

Die Nullhypothese lautet beim Chi-Quadrat-Unabhängigkeitstest stets, dass die Zufallsvariablen und in der Grundgesamtheit stochastisch unabhängig sind. Die Alternativhypothese enthält das logische Pendant.

: und sind stochastisch unabhängig.

: und sind nicht stochastisch abhängig.

Wenn die Nullhypothese gilt, dann ergibt sich nach dem Multiplikationssatz bei Unabhängigkeit

Dabei bezeichnen:

die Wahrscheinlichkeit, dass die Zufallsvariable den Wert bzw. einen Wert aus der -ten Klasse und gleichzeitig den Wert bzw. einen Wert aus der -ten Klasse annimmt;

die Wahrscheinlichkeit, dass die Zufallsvariable den Wert bzw. einen Wert aus der -ten Klasse annimmt (Randwahrscheinlichkeit von ) und

die Wahrscheinlichkeit, dass die Zufallsvariable den Wert bzw. einen Wert aus der -ten Klasse annimmt (Randwahrscheinlichkeit von ).

Das Hypothesenpaar kann somit konkretisiert werden:

für alle Paare

für mindestens ein Paar

Das Signifikanzniveau und der Stichprobenumfang sind vor der Testdurchführung festzulegen.

Teststatistik des Chi-Quadrat-Unabhängigkeitstests

Für die Bestimmung der Teststatistik wird von den absoluten Häufigkeiten ausgegangen. Der Test basiert auf dem Vergleich der in der Stichprobe beobachteten und der bei Gültigkeit der Nullhypothese erwarteten gemeinsamen absoluten Häufigkeiten.

Für die konkrete Stichprobe sind die gemeinsamen absoluten Häufigkeiten

in den Zellen der zweidimensionalen Häufigkeitstabelle gegeben. Da diese absoluten Häufigkeiten Ergebnis eines Zufallsexperimentes sind, können sie von Stichprobe zu Stichprobe unterschiedliche Werte annehmen, d.h., sie sind Realisationen von Zufallsvariablen .

Wenn die Nullhypothese gilt, ergeben sich die erwarteten gemeinsamen absoluten Häufigkeiten als .

Da die gemeinsamen Wahrscheinlichkeiten und die Randwahrscheinlichkeiten und für alle und unbekannt sind, müssen sie aus der Stichprobe geschätzt werden.

Erwartungstreue und konsistente Punktschätzungen für und sind die relativen Randhäufigkeiten und .

Das beinhaltet, dass von festen Randhäufigkeiten der zweidimensionalen Häufigkeitstabelle ausgegangen wird. Damit erhält man Schätzungen für die unter erwarteten gemeinsamen absoluten Häufigkeiten:

Der Vergleich zwischen den in der Stichprobe beobachteten und den bei Gültigkeit der Nullhypothese erwarteten gemeinsamen absoluten Häufigkeiten baut auf den Differenzen auf.

Eine summarische Größe, die die Abweichung von der Nullhypothese bewertet, ist die Teststatistik

Bei Gültigkeit der Nullhypothese ist die Teststatistik approximativ Chi-Quadrat-verteilt mit Freiheitsgraden.

Die Approximation an die Chi-Quadrat-Verteilung ist hinreichend, wenn für alle gilt.

Ist diese Bedingungen nicht erfüllt, müssen vor der Anwendung des Tests benachbarte Werte bzw. Klassen zusammengefaßt werden. und sind die Anzahlen der verbliebenen Werte bzw. Klassen nach einer eventuell notwendigen Zusammenfassung.

Der kritische Wert wird für und die Anzahl der Freiheitsgrade aus der Tabelle der Verteilungsfunktion der Chi-Quadrat-Verteilung entnommen.

Entscheidungsbereiche des Chi-Quadrat-Unabhängigkeitstests

Die Entscheidungsbereiche sind:

Ablehnungsbereich der

Nichtablehnungsbereich der

Die Wahrscheinlichkeit, dass die Teststatistik eine Realisation aus dem Ablehnungsbereich der annimmt, entspricht dem vorgegebenen Signifikanzniveau .

Die Wahrscheinlichkeit, dass die Teststatistik eine Realisation aus dem Nichtablehnungsbereich der annimmt, ist .

Nichtablehnungsbereich der | Ablehnungsbereich der

Prüfwert des Chi-Quadrat-Unabhängigkeitstests

Wenn die Zufallsstichprobe vom Umfang gezogen wurde, können die absoluten Häufigkeiten für alle beobachteten Wertepaare ermittelt, daraus die beobachteten Randhäufigkeiten für und bestimmt und die erwarteten absoluten Häufigkeiten berechnet werden.

Ist die Approximationsbedingung nicht erfüllt, müssen Werte bzw. Klassen geeignet zusammengefaßt und die Häufigkeiten , , und erneut bestimmt werden.

Einsetzen von und für alle in die Teststatistik führt zu einem Prüfwert .

Entscheidungssituationen des Chi-Quadrat-Unabhängigkeitstests

Wenn in den Ablehnungsbereich der fällt, wird die Nullhypothese auf dem Signifikanzniveau und basierend auf der Zufallsstichprobe vom Umfang abgelehnt .

Es konnte statistisch gezeigt werden, dass die Zufallsvariablen und nicht stochastisch unabhängig sind.

Bei dieser Entscheidung besteht die Möglichkeit einen Fehler 1. Art zu begehen, wenn in Wirklichkeit die Nullhypothese richtig ist.

Die Wahrscheinlichkeit für einen Fehler 1. Art entspricht dem vorgegebenen Signifikanzniveau .

Wenn in den Nichtablehnungsbereich der fällt, wird die Nullhypothese basierend auf der Zufallsstichprobe vom Umfang nicht abgelehnt .

Das Stichprobenergebnis gibt keine Veranlassung, die Unabhängigkeit der Zufallsvariablen und zu verwerfen.

Bei dieser Entscheidung besteht die Möglichkeit, einen Fehler 2. Art zu begehen, wenn in Wirklichkeit die Alternativhypothese richtig ist.