Binomialverteilung

Aus MM*Stat

Version vom 22. November 2018, 16:52 Uhr von Siskosth (Diskussion | Beiträge)
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Wechseln zu: Navigation, Suche
Die druckbare Version wird nicht mehr unterstützt und kann Darstellungsfehler aufweisen. Bitte aktualisieren Sie Ihre Browser-Lesezeichen und verwenden Sie stattdessen die Standard-Druckfunktion des Browsers.

Verteilungsmodelle

Diskrete Gleichverteilung • Binomialverteilung • Hypergeometrische Verteilung • Poisson-Verteilung • Stetige Gleichverteilung • Exponentialverteilung • Normalverteilung • Standardnormalverteilung • Schwankungsintervall • Zentraler Grenzwertsatz • Chi-Quadrat-Verteilung • t-Verteilung • F-Verteilung • Approximation von Verteilungen • Multiple Choice • Video • Aufgaben • Lösungen
Approximation • Approximation der Binomialverteilung • Approximation der hypergeometrischen Verteilung • Approximation der Poisson-Verteilung • Bernoulli-Experiment • Endlichkeitskorrektur • Freiheitsgrad • Gauß-Verteilung • Gauß'sche Glockenkurve • Gedächtnislosigkeit der Exponentialverteilung • Gleichverteilung (diskret) • Gleichverteilung (stetig) • Poisson-Prozess • Sicherheitswahrscheinlichkeit • Standardnormalverteilung • Stetigkeitskorrektur • Student'sche t-Verteilung • Überschreitungswahrscheinlichkeit • Zentrales Schwankungsintervall

Grundbegriffe

Bernoulli-Experiment

Ein Zufallsexperiment ist durch folgende Eigenschaften gekennzeichnet:

  • Es gibt nur zwei mögliche Ereignisse und
  • Die Wahrscheinlichkeiten des Eintretens der Ereignisse sind und

Ein derartiges Zufallsexperiment heißt Bernoulli-Experiment.

Binomialverteilung

Der Binomialverteilung liegt ein Bernoulli-Experiment zugrunde, bei dem entweder ein Ereignis mit konstanter Wahrscheinlichkeit oder das zu komplementäre Ereignis mit der Wahrscheinlichkeit eintreten kann.

Dieses Zufallsexperiment wird -mal wiederholt.

Die diskrete Zufallsvariable, welche die Anzahl des Eintretens von bei -maliger Durchführung des Zufallsexperimentes beinhaltet, heißt binomialverteilt mit den Parametern und , wenn ihre Wahrscheinlichkeitsfunktion durch

gegeben ist. In Kurzform schreibt man

Für die Verteilungsfunktion folgt

Erwartungswert und Varianz der Binomialverteilung :

Zusatzinformationen

Eigenschaften der Binomialverteilung

  • Reproduktivitätseigenschaft:
Sind und unabhängige Zufallsvariablen, so ist die Zufallsvariable ebenfalls binomialverteilt mit den Parametern und , d.h. .
  • Symmetrieeigenschaft:
Ist und dann gilt .

Für ausgewählte Werte der Parameter und (mit ) liegt die Binomialverteilung tabelliert vor (z.B. Formelsammlung Statistik I+II).

Graphische Darstellung der Binomialverteilung

Da die Binomialverteilung eine diskrete Verteilung ist, erfolgt die grafische Darstellung der Wahrscheinlichkeitsfunktion als Stabdiagramm und die der Verteilungsfunktion als Treppenfunktion.

Die folgende Abbildung zeigt zu verschiedenen Werten von , bei gleichem , die Wahrscheinlichkeitsfunktion der Binomialverteilung.

Man erkennt, dass die Verteilung für linkssteil ist und zwar umso deutlicher, je kleiner ist.

Für ist die Verteilung symmetrisch zum Wert .

Für erhält man rechtssteile Verteilungen als "Spiegelbild" zu den entsprechenden linkssteilen Verteilungen.


Approximation der Binomialverteilung durch Normalverteilung

Für sehr große Werte von lässt sich die Wahrscheinlichkeitsfunktion durch die Dichtefunktion einer Normalverteilung mit und approximieren.

Diese Approximation ist umso besser, je näher bei 0,5 liegt, und wird schlechter, je näher bei 0 oder 1 liegt.

Die theoretische Rechtfertigung liefert der zentrale Grenzwertsatz.

Herleitung der Binomialverteilung

Für jeden Versuch eines Bernoulli-Experimentes wird eine Zufallsvariable definiert, die nur die Werte 0 (für das Eintreten von ) und 1 (für das Eintreten von ) annehmen kann.

Gemäß den gegebenen Wahrscheinlichkeiten und weist jede Zufallsvariable die Wahrscheinlichkeitsfunktion (Bernoulli-Verteilung)

mit und auf.

Bei -maliger Durchführung der Versuche interessiert die Gesamtzahl des Eintretens von , so dass die Zufallsvariable

betrachtet wird:

ist eine Funktion (Linearkombination) von Zufallsvariablen.

Das Ereignis tritt ein, wenn in der Folge der Versuche genau -mal das Ereignis und -mal das Ereignis eintritt z.B.

, also -mal und -mal .

Die Indizierung der Ereignisse gibt die Nummer des Versuchs an.

Die Wahrscheinlichkeit, dass die Zufallsvariable die Realisation bei dieser Ereignisfolge annimmt, ist wegen der Unabhängigkeit der Versuche

Es gibt jedoch nicht nur eine Folge von Versuchen, bei der genau -mal das Ereignis und -mal das Ereignis eintritt.

Die Wahrscheinlichkeit jeder dieser Folgen ist ebenfalls .

Die Anzahl der verschiedenen Ereignisfolgen lässt sich mithilfe des Binomialkoeffizienten ermitteln, ist also durch die Anzahl der Kombinationen ohne Wiederholung gegeben:

Aufgrund der Unabhängigkeit der Ereignisfolgen resultiert die Wahrscheinlichkeitsfunktion