Gauß-Test/Beispiele
Aus MM*Stat
Beispiele
Problematik der Hypothesenformulierung
Ein Beispiel soll die Problematik der Wahl von Null- und Alternativhypothese verdeutlichen.
Ein Unternehmen stellt Autoreifen her. Zur Erhöhung der Lebensdauer eines bestimmten Typs von Autoreifen wurden Materialänderungen vorgenommen.
Die Konkurrenz behauptet nun, dass durch die Materialänderung keine Erhöhung gegenüber der ursprünglichen mittleren Lebensdauer dieses Reifentyps von 38000 km erreicht wurde.
Der Reifenhersteller lässt deshalb eine Prüfung vornehmen, womit ein statistischer Test verbunden ist.
Die Zufallsvariable ist die Lebensdauer des betrachteten Reifentyps.
Vor der Materialänderung betrug die mittlere Lebensdauer des Reifentyps km. Nach der Materialänderung ist unbekannt, soll jedoch gemäß der Behauptung des Reifenherstellers größer als sein, d.h. km.
Wie soll der statistische Test formuliert werden?
- Zunächst ist eindeutig, dass ein zweiseitiger Test nicht in Frage kommt, da aufgrund der Behauptung des Reifenherstellers nur die Abweichungen in eine Richtung relevant sind. Es ist noch zwischen rechts- und linksseitigem Test zu wählen.
- Die Intention des Reifenherstellers ist, seine Behauptung "statistisch möglichst gesichert zu beweisen". Dabei will er das Risiko einer Fehlentscheidung möglichst klein halten.
- Daraus folgt, dass die Behauptung des Reifenherstellers als Alternativhypothese zu formulieren ist, woraus sich ein rechtsseitiger Test ergibt:
- Wird im Ergebnis des Tests auf der Basis einer Zufallsstichprobe vom Umfang die Nullhypothese abgelehnt , so besteht die Möglichkeit, einen Fehler 1. Art zu begehen, d.h. die abzulehnen, obwohl sie wahr ist.
- Der sich aus der Problemstellung ergebende Inhalt des Fehlers 1. Art ist:
- "Die Lebensdauer hat sich durch die Materialänderung erhöht" | In Wirklichkeit hat sich die Lebensdauer nicht erhöht.
- Wird im Ergebnis des Tests die Nullhypothese nicht abgelehnt , so bedeutet das nicht, dass sie richtig ist, sondern lediglich, dass das Stichprobenergebnis ihr nicht widerspricht.
- Man kann einen Fehler 2. Art begehen, d.h. die beizubehalten, obwohl sie falsch ist. Der Inhalt des Fehlers 2. Art ist:
- "Die Lebensdauer hat sich nicht erhöht" | In Wirklichkeit hat sich die Lebensdauer durch die Materialänderung erhöht.
Ein Vergleich der beiden Fehler zeigt, dass der Fehler 1. Art für den Reifenhersteller der schwerwiegendere Fehler ist, denn
- die Konkurrenz schläft nicht und würde für diesen Reifentyp ebenfalls Prüfungen vornehmen (die Konkurrenz würde jedoch einen linksseitigen Test verwenden).
- die dauerhafte Verwendung des veränderten Reifens würde bald zeigen, dass die Lebensdauer durch die Materialänderung tatsächlich nicht größer wurde, was dem Ansehen des Reifenherstellers bei seinen Kunden erheblichen Schaden zufügen würde.
Das Risiko, d.h. die Wahrscheinlichkeit für diesen Fehler 1. Art, muss der Reifenhersteller deshalb klein halten, was durch die Vorgabe des Signifikanzniveaus (z.B. ) erreicht werden kann.
Mehl
In einem Unternehmen wird Mehl maschinell in Tüten abgefüllt. Das Sollgewicht beträgt 1000 g, auf das die Maschine justiert wurde.
Das Ist-Gewicht der Mehltüten weist gewisse Schwankungen auf, die im Produktionsprozess nicht vermieden werden können.
Damit ist das Ist-Gewicht eine Zufallsvariable: "Ist-Gewicht der Mehltüten".
Der Erwartungswert des Ist-Gewichts , mit dem die Maschine derzeit arbeitet, ist unbekannt. Er soll jedoch dem Sollgewicht entsprechen, d.h. .
Die Konsequenz ist, dass nach einer gewissen Laufzeit der Maschine überprüft werden muss, ob die ursprüngliche Justierung der Maschine noch eingehalten wird oder ob schon erhebliche Abweichungen auftreten.
Dazu wird in gewissen Abständen eine Zufallsstichprobe vom Umfang aus der Produktion entnommen, für die Stichprobe das durchschnittliche Ist-Gewicht ermittelt und das Ergebnis mit dem Sollwert verglichen.
Bei erheblichen (signifikanten) Abweichungen muss eine neue Justierung der Maschine vorgenommen werden.
Aus der Sicht des Unternehmers sind Abweichungen nach beiden Seiten vom Sollwert relevant.
Wird im Mittel zu wenig abgefüllt, würde dieser Umstand über kurz oder lang bei Überprüfungen (z.B. durch Verbraucherorganisationen) bekannt und der Reputation des Unternehmens erheblichen Schaden zufügen.
Wird im Mittel zu viel abgefüllt, schmälert dies den Gewinn des Unternehmers. Es ist somit ein zweiseitiger Test durchzuführen:
Der Test soll auf einem Signifikanzniveau von durchgeführt werden.
Es wird eine Zufallsstichprobe vom Umfang gezogen. Aufgrund des großen Umfangs der Grundgesamtheit (Gesamtproduktion) kann dabei von einer einfachen Zufallsstichprobe ausgegangen werden.
Teststatistik und Entscheidungsbereiche
Als Schätzfunktion für den unbekannten Erwartungswert der Grundgesamtheit wird der Stichprobenmittelwert verwendet.
Es sei aufgrund der langjährigen Nutzung der Maschine bekannt, dass das Ist-Gewicht eine normalverteilte Zufallsvariable mit der Standardabweichung ist.
Dann folgt für die Schätzfunktion , dass sie ebenfalls normalverteilt ist und eine Standardabweichung von aufweist.
Bei Gültigkeit der Nullhypothese, d.h. wenn die Maschine im Mittel tatsächlich das Sollgewicht von 1000 g einhält, gilt:
.
Für die Teststatistik
folgt:
.
Aus der Tabelle der Verteilungsfunktion der Standardnormalverteilung findet man für den oberen kritischen Wert .
Wegen der Symmetrie der Normalverteilung gilt .
Damit ergeben sich die Entscheidungsbereiche des Tests zu:
Ablehnungsbereich der |Nichtablehnungsbereich der |Ablehnungsbereich der
Prüfwert
Es werden nunmehr die 25 Mehltüten zufällig ausgewählt, ihr Ist-Gewicht festgestellt und das arithmetische Mittel dieser Gewichte berechnet, für das sich ergeben habe.
Als Prüfwert erhält man
Entscheidungssituationen
Da in den Nichtablehnungsbereich der fällt, wird die Nullhypothese nicht abgelehnt.
Basierend auf der Zufallsstichprobe vom Umfang konnte statistisch nicht gezeigt werden, dass der wahre Erwartungswert in der Grundgesamtheit verschieden vom hypothetischen Wert ist, d.h. dass die Maschine den Sollwert von 1000 g nicht einhält.